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Abstract

In this paper we investigate some popular ranking algorithms used in Web
searching and mining. We show that these algorithms can be considered as
applications of the general Markov Chain Monte Carlo (MCMC) method. By
this observation we suggest some new algorithms and we describe how can
we study the properties of the old and new algorithms.
Categories and Subject Descriptors: G.3 [Probability and Statistics]:
Probabilistic algorithm; H.2.8 [Database Applications]: Data mining - Web
mining, stochastic search;
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1. Introduction

Nowadays the Web has become a living and growing storehouse of knowledge
built in a decentralized and heterogen manner. Besides many positive implications
there are some negative impacts of the complexity of the Web. For many queries
there are thousands of responses and this fact makes it hard to find the information
we need. To resolve this problem certain techniques of machine learning and data
mining have become widely applied. Such techniques detect and exploit statistical
dependencies between Web pages and hyperlinks. This new and exciting field is
called web mining, see the monograph of Chakrabarty [6].

In this paper, we focus mainly on ranking between the Web pages. It is reason-
able to measure the rank or “goodness” of a Web page with the number as many
times a typical surfer has visited the page. In general, the motion of a typical
surfer on the Web can be modeled by a random walk on the WebGraph. In the
standard ranking algorithms (PageRank, HITS) this random walk is as simple as
possible, i.e. the surfer chooses between the hyperlinks on a web page uniformly
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at random. Thus, the rank of a Web page will be a functional of this random
walk, and a random walk defines a Markov chain on the WebGraph. The MCMC
type algorithms form a commonly used statistical method to evaluate such kind of
functionals on a complex state space, like WebGraph.

The paper is organized as follows. In Section 2 the searching infrastructure of
the Web is introduced. Section 3 gives a short overview on the WebGraph. In
Section 4 the fundamentals of MCMC are presented. Some old and new ranking
algorithms are considered in Section 5 from the point of view of MCMC setup.
Finally, Section 6 is devoted to open problems and further works.

2. Searching on the Web

In order to find the information we need on the Web we make clear the following
questions

• Which is the “proper” model for the Web?

• Which is the “best” searching and information retrieving strategy?

• How do we use the Web?

These quertions define different areas of the web mining. The first one is the basic
question of the Web structure mining. To find the right answer for our query we
have to know where can it be on the Web. The second one is the heart of the
web content mining. The main part of this subject is to rank different web pages
addressed to the same topic. Finally, the third one belongs to the field of web usage
mining.

Figure 1: General search engine architecture
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Before we describe ranking techniques, it is useful to understand how a Web
search engine works. Figure 1 shows such an engine schematically. The basic
components of this engine are the followings: crawlers, crawler control module,
page repository, indexer module, query engine and ranking module. See Arasu et
al. [2] for the detailed role of these components. The ranking module has the task
of sorting the results such that results near the top are the most likely to be what
we are looking for. This and the algorithms behind him are the main subject of
this paper.

3. The WebGraph

We consider the HTML “points–to” relation on Web pages as a directed graph
G = (V,E), where the set V of vertices consists of the Web pages, and the set
E of directed edges (i, j), which exist iff page i has a hyperlink to page j.
In practice this graph is usually pruned to remove self–loops and other forms of
spam. Then the graph G is called the WebGraph. Here we summarize some basic
properties of the WebGraph:

• Many nodes, 1 billion pages, 15 terabytes;

• Very sparse, average links per page is between 5 and 10;

• Highly dynamic, 1 million new pages per day, over 600 Gbyte of pages change
per month.

Due to a comprehensive project organized by Bröder et al. [5] some old con-
jectures have been rejected concerning the graph structure of the Web. They have
been investigated 1.5 billion links on 200 million web pages. Bröder et al. realized
that “the old picture—where no matter where you start, very soon you’ll reach the
entire Web—is not quite right”. They have been suggested the so–called bow tie
model, see Figure 2. The core of this model is the strongly connected component
(SCC) of the WebGraph G. It is the subset of vertices such that for all pairs
of pages i, j there exists a directed path from i to j, i.e. (i, j) ∈ E. The
left bow consists of the new or obscure web pages, i.e. such pages where there
exists a hyperlink to a page belonging to SCC. The right bow mainly consists of
commercial sites. Finally, there is a large number of disconnected pages.

Different theoretical models are developed to describe the structure and evolu-
tion of the WebGraph. We have been collected the most important ones:

• Random graphs (Erdős, Rényi [7]);

• ACL model for massive graph (Aiello, Chung, Lu [1]);

• Evolving networks (Albert, Barabási, Jeong [4]);

• Copying models (Kumar, Rhagavan [10]);
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Figure 2: Bow tie model of the Web

• Small Worlds (Watts, Strogats [17]);

• Multi–Layer models (Caldarelli, De Los Rios, Leonardi [11]).

Some of these models, e.g. ACL and Barabási’s one, generate a random graph pos-
sessing bow tie structure but others, e.g. model introduced by Erdős and Rényi, do
not. To find a proper model for the Webgraph is crucial to develope an appropriate
ranking algorithm because of the movement of a surfer can be described in some
sense as a random walk on the (random) WebGraph.

4. Markov Chain Monte Carlo

Consider a Markov chain X0, X1, X2, . . . on a state space X , with transition
probabilities P (x, ·), x ∈ X , and stationary distribution π. Our aim is to
estimate the mean, in other words the average behaviour, of various functionals of
this random motion on the state space X . For example, let π(h) :=

∫
X h dπ,

where h : X → R is a function. One of the possible estimates for π(h) is

π̂(h) :=
1

n

n∑

i=1

h(Xi). (1)

Specific examples and applications of such “MCMC algorithms” include the
followings:

• Counting in large combinatoric structures;

• Integrating in high dimension;

• Sampling for complex distributions (e.g. Gibbs sampler);
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• Simulating complex stochastic systems (Metropolis–Hastings algorithm).

For references see Gilks et al. [8] and Tierney [16].

5. Ranking algorithms

The first observation of making an efficient ranking module is that the Web is
an example of a social network. Networks of social interaction are formed between
academics by co–authoring (e.g. Erdős number), movie stars in Hollywood, football
stars who played in the same team anytime, contries via trading relation and so on.
The basic concepts of this theory like status, prestige and centrality play important
role in the theory of Web ranking. The graph theoretical modelling is also common.
For example, Seeley [15] early realized the recursive nature of prestige in a social
network:

...we are involved in an “infinite regress”: an actor’s status is a function
of the status of those who choose him; and their status is a function
of those who choose them, and so ad infinitum.

Thus any measurement, which describes the importance or goodness of a web page,
can be considered as an invariant functional of a (stochastic) dynamical system.

The general scheme of defining and calculating a ranking measure on the whole
or a part of the Web is the following:

• Define a Markov chain on the WebGraph to model a typical surfer with a
unique invariant probability measure π. Then π mesures the average
residence time of a random surfer at a web page.

• Define a functional h : G → R on the WebGraph. By h we want to measure
a property of web pages, e.g. prestige or centrality with respect to a topic.

• Estimate π(h) by Markov Chain Monte Carlo method.

In the next examples we demonstrate that the two standard ranking algorithm,
PageRank and stochastic HITS, work along the above scheme.

The algorithm PageRank has been introduced by Page and Brin [13], the
founders of the popular Web search engine Google. We define d(i) as the out–
degree of page i, i.e. the number of hyperlinks on page i. The Markov chain
behind the PageRank algorithm is defined by the random surfer model. This model
supposes that the surfer chooses an out–neighbour of the current page uniformly
at random. Denote by p(i) the prestige of the web page i. In PageRank it is
supposed that the prestige of a page depends on the prestige of its in–neighbours.
This means the following recursion:

p(i) =
∑

(j,i)∈E

d−1(j)p(j), i ∈ V. (2)
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In vector form we have

π = πA, where Aij =

{
1/d(i) if (i, j) ∈ V,

0 otherwise
(3)

and π := (p(i), i ∈ V ). Thus, in case of PageRank the Markov chain defined
by the transition matrix A, the prestige is the stationary distribution π of the
chain, and the functionals are the page–functionals hi, i ∈ V , where hi(j) = 1
if i = j, and hi(j) = 0 otherwise. In Section 3 we mentioned that the whole
WebGraph is not strongly connected. This implies that the Markov chain behind
the PageRank is not aperiodic and irreducible. Hence, in general, its stationary
distribution is not unique.

To avoid this kind of anomalities Page et al. have been introduced the modified
PageRank algorithm. In this case the recursion (2) is replaced by the following:

p(i) = α+ (1− α)
∑

(j,i)∈E

d−1(j)p(j), (4)

where 0 < α < 1. This modification already yields an irreducible, aperiodic
Markov chain. In the Google α = 0.15. In this case the Markov chain behind the
model is defined by the jumping surfer model in the following way:

• with probability α, the surfer jumps to a random page on the Web;

• with probability 1 − α, the surfer chooses an out–neighbour page of the
current page uniformly at random.

For the unique stationary distribution we have the linear equation:

π = π
(α
n
E + (1− α)A

)
, (5)

where Eij = 1 for all i, j ∈ V . Numerical methods to solve this equation, like
power iteration and Gauss–Seidel method, can be found in Arasu et al. [3].

Another way to resolve the problem of periodicity and reducibility is of using
time–sampled chains introduced by Rosenthal [14]. The time–sampled Markov
chain is defined by the transition matrix Aµ =

∑
n µ(n)A

n, where µ is probability
distribution on the non–negative integers and An is the n–step transition matrix.
For example, if µ(1) = µ(2) = 1/2, then Aµ = (A + A2)/2. We can interpret
this new chain as the average of the motion of two random surfers, where the first
one takes one step and the second one takes two steps at same time according to
the original random surfing model. One can realize easily time–sampled Markov
chain based ranking algorithm by using several crawlers, each crawler browses the
Web following the same random surfer model with different step number.

The other well–known ranking algorithm is the HITS (hyperlink induced topic
search) introduced by Kleinberg [9]. In HITS and its stochastic variant SALSA (see
Lempel and Moran [12]), instead of the whole WebGraph, a root set R with its
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neighbours R are involved. Here the root set, which is a query dependent graph, is
a collection of web pages given by a query of a standard IR system. The two basic
concepts of HITS are the authority and centrality. Namely, Klenberg observed
that there are two different kinds of web pages, like in the academic literature,
popular pages or authorities, which contain definitive high–quality information and
link collections, which are comprehensive lists of links to authorities. Denote the
authority of a page i by a(i) and the centrality by c(i). Moreover, denote f(i)
the in–degree of the page i. Then the stochastic HITS is defined by the recursions

a(i) =
∑

(j,i)∈E

d−1(j)c(j), c(i) =
∑

(i,j)∈E

f−1(j)a(j), (6)

for all i ∈ R. The vector form of these equations is

(
a b

)
=

(
a b

)(O A
C O

)
, (7)

where

Aij =

{
1/d(i) if (i, j) ∈ V,

0 otherwise
, Cij =

{
1/f(i) if (j, i) ∈ V,

0 otherwise.
(8)

One can see that the stochastic HITS can be considered as a direct product of
a random walk and a reversed random walk on R × R. For the authority–to–
authority transition matrix we have

a(i) =
∑

k

a(k)pki, pki := f−1(k)
∑

(j,i),(j,k)∈E

d−1(j). (9)

For the centrality–to–centrality matrix we have

c(i) =
∑

k

c(k)qki, qki := d−1(k)
∑

(i,j),(k,j)∈E

f−1(j). (10)

There are several proposals for functional h to measure different properties of
the web pages. For example

• environment functional of the page i, i.e. h =
∑

(i,j)∈E Ij ;

• portal functional defined by h = IP , where P is a collection of web pages
that form a portal;

• topic functional, i.e. h : V → [0, 1], where h(i) is the goodness of the page
i with respect to a topic.

Finally, consider the following more complicated example for ranking. Suppose
that we would like to measure the goodness of web pages from several different
point of view. Let K be the number of topics, and denote by p(i, k) the prestige
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or rank of the web page i with respect to the kth topic. Define the following
modification of the standard PageRank:

p(i, k) =
∑

(j,i)∈E

K∑

`=1

w(k, `)

d(j)
p(j, `), (11)

where W = {w(k, `)} is a weight matrix, which measures the strength of the
interactions between the topics. By this way we have a Markov chain, and the
general MCMC scheme can be applied.

6. Further work

In the last section we summarize some further works we have to do in order to
make a really efficient ranking algorithm.

The first one is to find better and better model for the WebGraph. We have
to emphasize that the Web evolves like a living creature. It is changing for time
to time, and its structure can also change. We mention, for example, that in the
beginning the Web was connected. So it happens that the bow tie model will be
no longer valid.

The second one is to find an appropriate model for descibing the motion of a
typical surfer on the Web. We think that the random and jumping surfer models
are too simple.

The third one is to find the most efficient MCMC methods to evaluate the
goodness of web pages from different point of view. A proposal, which can work
well, is the multiple MCMC. We observed that an MCMC algorithm for Web
ranking can be realized by a crawler. However, it is known that the largest crawler
covers less than 16% of the WebGraph. Thus, if we want to develope a ranking
algorithm for the whole Web, then we need to use as much crawler as possible.
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