
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Verifying invariants of abstract functional
objects—a case study∗

Zoltán Horváth, Tamás Kozsik, Máté Tejfel

Department of Programming Languages and Compilers
Eötvös Loránd University, Budapest

e-mail: hz@inf.elte.hu, kto@elte.hu, matej@inf.elte.hu

Abstract
In a pure functional language like Clean the values of the functional vari-

ables are constants; variables of functional programs do not change in time.
Hence it seems that temporality has no meaning in functional programs.
However, in certain cases (e.g. in interactive or distributed programs, or in
ones that use IO) we would like to consider a series of values computed from
each other as different states of the same “abstract object”. For this abstract
object we can already prove temporal properties (e.g. invariants). In this
paper we present a case study: our example is an interactive database with
some simple operations like updating, sorting, querying records. We specify
an invariant property of our program and we show how to prove this property.
We utilize Sparkle, a theorem prover designed for the Clean language. Since
Sparkle is not capable of handling temporal logical properties, the applica-
tion of certain rules of the proof system are performed by hand. This way
we simulate the behaviour of a more sophisticated theorem prover, which is
currently under development.
Categories and Subject Descriptors: D.1.1 [Programming Techniques]:
Applicative (Functional) Programming; F.3.1 [Logics and meanings of pro-
grams]: Specifying and Verifying and Reasoning about Programs - invari-
ants;
Key Words and Phrases: Verification, invariant properties, abstract func-
tional object, Clean, Sparkle

1. Introduction

Temporal logical operators (such as “nexttime”, “sometimes”, “always” and “in-
variant”) are very useful for proving correctness of (sequential or parallel) impera-

∗Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr.T037742
and by Bolyai Research Scholarship of Hungarian Academy of Sciences.

201

202 6 th International Conference on Applied Informatics

tive programs. All these operators can be expressed based on the “weakest precon-
dition” operator [9, 10].

The temporal logical operators describe how the values of the program variables
(which constitute the so-called program state) vary in time. For example, the
weakest precondition of a program statement with respect to a postcondition holds
for a state “a” if and only if the statement starting from “a” always terminates in a
state for which the postcondition holds. The weakest precondition of a statement
is possible to compute in an automated way: one has to rewrite the postcondition
according to the substitution rules defined by the statement. The details of this
technique can be found in e.g. [5].

Temporal properties are not really used when reasoning about functional pro-
grams (among the few exceptions are e.g. [8, 11, 3, 12]). In a pure functional
programming language a variable is a value, like in mathematics, and not an “ob-
ject” that can change its value in time, viz. during program execution. Due to
referential transparency, reasoning about functional programs can be accomplished
with a fairly simple mathematical machinery, using, for example, classical logic
and induction (see e.g. [4]). This fact is one of the basic advantages of functional
programs over imperative ones.

In our opinion, however, in certain cases it is natural to express our knowl-
edge about the behaviour of a functional program (or, we had better say, our
knowledge about the values the program computes) in terms of temporal logical
operators. Moreover, in the case of parallel or distributed functional programs,
temporal properties are exactly as useful as they are in the case of imperative pro-
grams. For example, those invariants which are preserved by all components of a
distributed or parallel program, are also preserved by the compound program.

According to our approach, certain values computed during the evaluation of a
functional program can be regarded as successive values of the same “abstract ob-
ject”. This corresponds directly to the view which certain object-oriented functional
languages hold.

This paper aims to show a simple example how to interpret and prove temporal
properties of functional programs using the object abstraction method. We inspect
a special temporal property, an invariant. A property P is an invariant with respect
to a program and an initial condition if P holds initially (namely it is implied by
the initial condition) and all the atomic statements of the program preserve P .
Note that the second part of this requirement can be expressed with the weakest
precondition operator: for all atomic statements, the weakest precondition of the
statement with respect to P must follow from P .

We have chosen Clean [14], a lazy, pure functional language for our research. An
important factor in our choice was that a theorem prover, Sparkle [4] is already built
in the integrated development environment of Clean. Sparkle supports reasoning
about Clean programs almost directly. We would like to extend the first-order logic
used by Sparkle with temporal operators, thus making semi-automated reasoning
about parallel, interactive or distributed Clean programs easier.

Z. Horváth, T. Kozsik, M. Tejfel: Verifying invariants of abstract functional . . . 203

2. The program to reason about

In this case study we use a very simple example program modelling a database
of financial transactions. In this example a transaction is made up of two integer
numbers; the first one represents the date when the transaction occured, and the
other one stores the amount of money transfered in the transaction. The database
contains a list of transactions and the overall sum of the amounts transfered in the
transactions.

The types involved in this example can be specified in a functional language
(e.g. in Clean) in the following way.

:: Transaction :== (Int, Int) // a pair of date and amount
:: DB :== (Int, [Transaction]) // sum and list of transactions

Strict data structures and strict function arguments make reasoning simpler. Fur-
thermore, for some irrelevant technical reasons, in this example we have not used
the built-in polymorphic list datatype, and we have defined the list of transactions
without the using the synonym type Transaction. Hence our type definitions are
as follows:

:: Transaction :== (!Int, !Int) // date and amount
:: List = Nil | Cons !(!Int,!Int) !List // list of transactions
:: DB :== (!Int, !List) // sum and transactions

One can develop some basic operations for manipulating the database. A
new (empty) database can be created by invoking the function newDB. Functions
insertDB, remove-First and sortDB can be regarded as state transition functions,
which describe how the state of a database will change. In the FP terminology,
these functions compute the “new value” of the database from the “old value”. Func-
tion insertDB extends the database with a new transaction, removeFirst removes
the first transaction from the list of transactions, and sortDB sorts the transactions
by date. (In this simple example program we might, but not obliged to, assume
that the date is a primary key.)

newDB:: -> !DB
newDB = (0, Nil)

insertDB:: !(!Int,!Int) !DB -> DB
insertDB t=:(date,amount) (sum,list) = (sum+amount, Cons t list)

removeFirst:: !DB -> DB
removeFirst (sum,Nil) = (sum,Nil) // nothing to remove, skipping
removeFirst (sum, Cons (date,amount) list) = (sum-amount, list)

sortDB:: !DB -> DB
sortDB (sum,list) = (sum, sort_ins list)

204 6 th International Conference on Applied Informatics

The definition of sortDB applies function sort_ins, which implements an in-
sertion sort algorithm. Function insrt (invoked by sort_ins) requires that the
operation < be defined for type Transaction. In our example < compares the first
field of transactions, namely date.

sort_ins:: !List -> List
sort_ins Nil = Nil
sort_ins (Cons x xs) = insrt x (sort_ins xs)

insrt:: !Transaction !List -> List
insrt e Nil = Cons e Nil
insrt e ls=:(Cons x xs) = if (x<e) (Cons x (insrt e xs)) (Cons e ls)

instance < Transaction where (<) a b = (fst a) < (fst b)

Now we can develop a simple “scenario” application, which is built upon the
basic operations. One can imagine that this scenario simulates an interactive ses-
sion between a database management application and an end-user. The input
to this scenario is a database and a transaction. First we insert the transaction
into the database, then we sort the resulting database, finally we remove the first
transaction stored in the (sorted) database.

scenario :: !DB !(!Int,!Int) -> DB
scenario db t

db = insertDB t db
db = sortDB db
db = removeFirst db
= db

3. Object abstraction

Before formulating and proving temporal properties of our program, we have to
define “abstract objects”, that is we have to specify which functional (mathematical)
values correspond to different states of the same abstract object. Here we will
introduce a single abstract object, a database, whose consecutive states will be
the value given as argument to scenario, and the values computed by functions
insertDB, sortDB and removeFirst, respectively. Note that the program text has
also suggested the very same abstraction: the programmer chose the same name,
viz. db, to different functional values. This was possible due to the scoping rules of
Clean with respect to the “let-before” (#) construct. The scenario function could
have been equivalently defined without hiding of variables in this way:

scenario :: !DB !(!Int,!Int) -> DB
scenario db t

db1 = insertDB t db
db2 = sortDB db1

Z. Horváth, T. Kozsik, M. Tejfel: Verifying invariants of abstract functional . . . 205

db3 = removeFirst db2
= db3

The names of the functional variables that constitute the object abstraction are db,
db1, db2 and db3. Note that the choice of the values for the states of the abstract
object also determines the state transitions we have to deal with during the proof
of temporal properties.

How can a programmer supply this information? In our framework an inte-
grated programming environment (similar to the one currently available for Clean,
[16]) will help the programmer develop, and reason about, programs. This IDE
will store various data about a program in a relational data base. This data base
contains different sorts of compile time information (e.g. symbol table, syntax tree)
which enable Model-View-Controller based refactoring tools to operate on these
data [17]. One of the views is the “source code view”, another view may contain
the properties of the program and the proof of these properties. Certain views
will be human readable, other views will be processed by different programs. For
example, it will be possible to create a view in a format in which Sparkle internally
represents Clean programs.

Among the controllers there will be one which allows the programmer to select—
e.g. in a graphical user interface, by mouse-clicking on the source code—the vari-
ables, or expressions that belong to the state transition tree of an abstract object.
Another controller will make it possible to enter temporal logical properties of the
abstract object. Then these temporal logical properties can be proven by an ap-
propriate theorem prover. To accomplish this goal, the current theorem prover for
Clean (Sparkle) has to be altered: we will extend it with tactics (elementary proof
steps) to handle certain temporal logical operators. Since this enhanced theorem
prover is not yet implemented, in this case study will use Sparkle where possible,
and simulate the application of the lacking (temporal logical) tactics by hand.

4. An invariant of the abstract object

The invariant property of the abstract object chosen in the previous section will
be the following: if we sum up the amounts of money appearing in the transactions
stored in the second part of the database, we get the first (”sum”) part of the data-
base. In the current version of Sparkle, the definitions (functions and predicates)
required to formulate a theorem should be given in Clean. We will make use of a
function that sums up the amounts appearing in a list of transactions.

sumUp:: !List -> Int
sumUp Nil = 0
sumUp (Cons (date,amount) list) = amount + sumUp list

Let us denote the abstract object “database” by db . At first glance, we could
formulate an invariant property of db in the following way:

fst db = sumUp
(
snd db

)

206 6 th International Conference on Applied Informatics

When reasoning about programs, one must always take undefined results into ac-
count. For example, in a functional language like Clean it is possible to apply
partial functions, or to work with lazy or even infinite data structures. Certain use
of partial functions and lazy data structures can lead to run-time errors or infinite
computations. In a theorem prover such “undefined results” can be modelled by
a special ⊥ (undefined) value. In Sparkle the predefined predicate eval is used
to express that an expression does not contain undefined parts, that is the “com-
plete evaluation” of the expression is possible. For the user-defined data types the
programmer should provide the appropriate definitions of eval.

instance eval Transaction
where eval (date,amount) = eval date && eval amount

instance eval List
where eval Nil = True

eval (Cons t ts) = eval t && eval ts

instance eval DB
where eval (sum,list) = eval sum && eval list

Now it is possible to put down the required invariant property of db :

I
(

db
)
: fst db = sumUp

(
snd db

)
∧ eval db (1)

Next we will formulate an initial property Q(db, t) of scenario.

Q(db, t) : eval db ∧ eval t ∧ fst db = sumUp (snd db) (2)

Finally we will formulate that I
(

db
)
is an invariant property of scenario with

respect to the initial property Q(db, t).

I
(

db
)

∈ invscenario
(
Q(db, t)

)
(3)

Besides the Clean definitions and the description of the abstract object db , def-
initions (1,2) and statement (3) will be the input to the theorem prover.

5. The proof of the invariant property

The theorem prover for Clean which contains temporal logical tactics is not
yet implemented. Hence the first step of the proof discussed in this section was
performed by hand. This first step is the application of the not yet implemented
tactic “inv” on our goal, namely statement (3), which results in subgoals (4–7).
For the sake of readability we will use that definition of scenario which does not
contain hiding of variables. Subgoal (4) describes that I

(
db

)
holds initially, and

Z. Horváth, T. Kozsik, M. Tejfel: Verifying invariants of abstract functional . . . 207

subgoals (5–7) describe that I
(

db
)
is preserved by each state transitions of db .

None of the four subgoals contain temporal logical operators, so we can prove all
of them with Sparkle. The details of these proofs can be found in [15].

The first resulting subgoal, subgoal (4), describes that I
(

db
)
holds initially:

precondition Q(db, p) guarantees that the first (initial) state of db , namely db,
satisfies I. Formally, we require that Q(db, p) ⇒ I(db). If we unfold the definitions
for Q and I, we obtain the following theorem.

(eval db) ∧ (eval t) ∧
(
(fst db) =

(
sumUp (snd db)

))
⇒

(eval db) ∧
(
(fst db) =

(
sumUp (snd db)

))
(4)

This theorem is easy to prove. In Sparkle it takes 5 proof steps to complete this
proof.

The state transitions for our abstract database object db correspond to the
application of functions insertDB, sortDB and removeFirst. Subgoals (5–7) de-
scribe that I

(
db

)
is preserved by each of the three state transitions. We can

express this with the help of the weakest precondition operator [9], wp. For each
state transition s, the following should hold:

I
(

db
)

⇒ wp

(
s, I

(
db

))

Refer to [5] to see how wp can be interpreted in this context. In subgoals (5–7) the
temporal logical operator wp has already been eliminated.

The first state transition of db corresponds to the following computation of
the value db1 from db: db1 = insertDB db t. Note that this computation is
parametrized by another value, t, which is an argument of function scenario. In
such a case we can introduce a hypothesis about t, based on the initial condition
Q(db, t) of the invariant property we are currently proving. This hypothesis tells
us that t does not contain undefined parts: eval t. If t were not an argument of
scenario, but a value defined inside scenario, we could introduce a hypothesis
based on its definition. This case study, however, is lacking such an example.

(eval t) ∧ I(db) ∧ (db1 = insertDB db t) ⇒ I(db1) (5)
I(db1) ∧ (db2 = sortDB db1) ⇒ I(db2) (6)

I(db2) ∧ (db3 = removeF irst db2) ⇒ I(db3) (7)

The proofs of goals (5–7) requires about 4000 proof steps in Sparkle.

6. Conclusions and future work

In this paper we have studied a method that allows the definition and proof of
temporal properties (namely invariants) in pure functional languages. We have pre-

208 6 th International Conference on Applied Informatics

sented the concept of object abstraction, which is based on contracting functional
variables into objects with dynamic (temporal) behaviour. We have introduced a
notion of state transitions and we have illustrated on a very simple example how an
invariant of an abstract object over a set of atomic state transitions can be proved.
The proof was constructed in a theorem prover (Sparkle) except for a single proof
step. The missing step applied a tactic (inv) that is not yet implemented in the
theorem prover. The case study identified the method of producing subgoals during
the application of this tactic. The implementation of this tactic will be based on
this result.

The proof we have constructed in this case study is represented in a completely
machine processable form. As a consequence, not only the program, but also its
proved invariant property and the proof itself can be stored, transmitted or checked
by a computer.

The case study in this paper does not address some issues which may be im-
portant for more sophisticated examples. We have considered a situation where
the atomic state transitions of an abstract object were not distributed in more
than one function definition. We will have to develop further case studies in which
the analyzed function (like scenario in our example) contains “compound state
transitions”, namely it invokes other functions that contain more than one atomic
state transitions themselves. The solution to this problem will be useful to handle
recursive functions.

Our approach defines an alternative semantics of Clean programs. According
to this alternative semantics, some evaluation steps correspond to state transi-
tions over an abstract state space. The abstract state space is created by the
object abstraction, where series of pure functional values are associated to an ab-
stract objects. This methodology will be supported by an extension to Sparkle
[4], the theorem prover tool for Clean, to make reasoning about temporal prop-
erties of interactive, parallel or distributed Clean programs possible. We plan to
integrate the extended theorem prover into a program development and code ma-
nipulation/refactoring environment. Programs containing abstract objects will be
presented to the theorem prover in a format similar to the one Sparkle currently
uses to represent Clean programs and proofs, but extended with a representation
of abstract object.

Our model is straightforward to extend to a full temporal logic. We can prove
all temporal properties which are based on the “nexttime” operation, i.e. on the
calculation of the weakest precondition [2, 10]. We intend to prove general safety
properties (unless), and progress properties (leads-to, ensures) for Clean programs
in the future.

References

[1] Achten, P., Plasmeijer, R.: Interactive Objects in Clean. Proceedings of Implementa-
tion of Functional Languages, 9th International Workshop, IFL’97 (K. Hammond et
al (eds)), St Andrews, Scotland, UK, September 1997, LNCS 1467, pp. 304–321.

Z. Horváth, T. Kozsik, M. Tejfel: Verifying invariants of abstract functional . . . 209

[2] Chandy, K. M., Misra, J.: Parallel program design: a foundation. Addison-Wesley,
1989.

[3] Horváth Z., Achten, P., Kozsik T., Plasmeijer, R.: Verification of the Temporal Prop-
erties of Dynamic Clean Processes. Proceedings of Implementation of Functional Lan-
guages, IFL’99, Lochem, The Netherlands, Sept. 7–10, 1999. pp. 203–218.

[4] de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional Pro-
grammers, Sparkle: A Functional Theorem Prover. Springer Verlag, LNCS 2312, p.
55 ff., 2001.

[5] Horváth Z., Kozsik T., Tejfel M.: Proving Invariants of Functional Programs. Proceed-
ings of Eighth Symposium on Programming Languages and Software Tools, Kuopio,
Finland, June 17–18, 2003., pp. 115–126.

[6] Kozsik T.: Reasoning with Sparkle: a case study. Technical Report, Faculty of Infor-
matics, Eötvös Loránd University, Budapest, Hungary. (in preparation)

[7] Butterfield, A., Dowse, M., Strong, G.: Proving Make Correct: IO Proofs in Haskell
and Clean. Proceedings of Implementation of Functional Programming Languages,
Madrid, 2002. pp. 330–339.

[8] Dam, M., Fredlund, L., Gurov, D.: Toward Parametric Verification of Open Dis-
tributed Systems. Compositionality: The Significant Difference (H. Langmaack, A.
Pnueli, W.-P. De Roever (eds)), Springer-Verlag 1998.

[9] Dijkstra, E. W.: A Discipline of Programming. Prentice-Hall Inc., Englewood Cliffs
(N.Y.), 1976.

[10] Horváth Z.: The Formal Specification of a Problem Solved by a Parallel Program—a
Relational Model. Annales Uni. Sci. Bp. de R. Eötvös Nom. Sectio Computatorica,
Tom. XVII. (1998) pp. 173–191.

[11] Horváth Z., Achten, P., Kozsik T., Plasmeijer, R.: Proving the Temporal Properties
of the Unique World. Proceedings of the Sixth Symposium on Programming Languages
and Software Tools, Tallin, Estonia, August 1999. pp. 113–125.

[12] Kozsik T., van Arkel, D., Plasmeijer, R.: Subtyping with Strengthening Type Invari-
ants. Proceedings of the 12th International Workshop on Implementation of Functional
Languages (M. Mohnen, P. Koopman (eds)), Aachener Informatik-Berichte, Aachen,
Germany, September 2000. pp. 315–330.

[13] Peyton Jones, S., Hughes, J., et al. Report on the Programming Language Haskell
98, A Non-strict, Purely Functional Language, February 1999.

[14] Plasmeijer, R., van Eekelen, M.: Concurrent Clean Version 2.0 Language Report,
2001. http://www.cs.kun.nl/˜clean/Manuals/manuals.html

[15] Tejfel M.: The Problem of Proof Reuse in Sparkle: a case study. Technical Report,
Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary. (in prepara-
tion)

[16] Home of Clean. http://www.cs.kun.nl/˜clean/
[17] Diviánszky P., Szabó-Nacsa R., Horváth Z.: Refactoring via Database Representa-

tion. Proceedings of 6th International Conference on Applied Informatics, ICAI 2004,
January 27–31, Eger, Hungary, 2004.

