Verifying invariants of abstract functional objects—a case study

Zoltán Horváth, Tamás Kozsik, Máté Tejfel

Department of Programming Languages and Compilers
Eötvös Loránd University, Budapest
e-mail: hz@inf.elte.hu, kto@elte.hu, matej@inf.elte.hu

Abstract

In a pure functional language like Clean the values of the functional variables are constants; variables of functional programs do not change in time. Hence it seems that temporality has no meaning in functional programs. However, in certain cases (e.g. in interactive or distributed programs, or in ones that use IO) we would like to consider a series of values computed from each other as different states of the same “abstract object”. For this abstract object we can already prove temporal properties (e.g. invariants). In this paper we present a case study: our example is an interactive database with some simple operations like updating, sorting, querying records. We specify an invariant property of our program and we show how to prove this property. We utilize Sparkle, a theorem prover designed for the Clean language. Since Sparkle is not capable of handling temporal logical properties, the application of certain rules of the proof system are performed by hand. This way we simulate the behaviour of a more sophisticated theorem prover, which is currently under development.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Applicative (Functional) Programming; F.3.1 [Logics and meanings of programs]: Specifying and Verifying and Reasoning about Programs - invariants;

Key Words and Phrases: Verification, invariant properties, abstract functional object, Clean, Sparkle

1. Introduction

Temporal logical operators (such as “nexttime”, “sometimes”, “always” and “invariant”) are very useful for proving correctness of (sequential or parallel) impera-
tive programs. All these operators can be expressed based on the “weakest precondition” operator [9, 10].

The temporal logical operators describe how the values of the program variables (which constitute the so-called program state) vary in time. For example, the weakest precondition of a program statement with respect to a postcondition holds for a state “a” if and only if the statement starting from “a” always terminates in a state for which the postcondition holds. The weakest precondition of a statement is possible to compute in an automated way: one has to rewrite the postcondition according to the substitution rules defined by the statement. The details of this technique can be found in e.g. [5].

Temporal properties are not really used when reasoning about functional programs (among the few exceptions are e.g. [8, 11, 3, 12]). In a pure functional programming language a variable is a value, like in mathematics, and not an “object” that can change its value in time, viz. during program execution. Due to referential transparency, reasoning about functional programs can be accomplished with a fairly simple mathematical machinery, using, for example, classical logic and induction (see e.g. [4]). This fact is one of the basic advantages of functional programs over imperative ones.

In our opinion, however, in certain cases it is natural to express our knowledge about the behaviour of a functional program (or, we had better say, our knowledge about the values the program computes) in terms of temporal logical operators. Moreover, in the case of parallel or distributed functional programs, temporal properties are exactly as useful as they are in the case of imperative programs. For example, those invariants which are preserved by all components of a distributed or parallel program, are also preserved by the compound program.

According to our approach, certain values computed during the evaluation of a functional program can be regarded as successive values of the same “abstract object”. This corresponds directly to the view which certain object-oriented functional languages hold.

This paper aims to show a simple example how to interpret and prove temporal properties of functional programs using the object abstraction method. We inspect a special temporal property, an invariant. A property P is an invariant with respect to a program and an initial condition if P holds initially (namely it is implied by the initial condition) and all the atomic statements of the program preserve P. Note that the second part of this requirement can be expressed with the weakest precondition operator: for all atomic statements, the weakest precondition of the statement with respect to P must follow from P.

We have chosen Clean [14], a lazy, pure functional language for our research. An important factor in our choice was that a theorem prover, Sparkle [4] is already built in the integrated development environment of Clean. Sparkle supports reasoning about Clean programs almost directly. We would like to extend the first-order logic used by Sparkle with temporal operators, thus making semi-automated reasoning about parallel, interactive or distributed Clean programs easier.
2. The program to reason about

In this case study we use a very simple example program modelling a database of financial transactions. In this example a transaction is made up of two integer numbers; the first one represents the date when the transaction occurred, and the other one stores the amount of money transferred in the transaction. The database contains a list of transactions and the overall sum of the amounts transferred in the transactions.

The types involved in this example can be specified in a functional language (e.g. in Clean) in the following way.

:: Transaction :== (Int, Int) // a pair of date and amount
:: DB :== (Int, [Transaction]) // sum and list of transactions

Strict data structures and strict function arguments make reasoning simpler. Furthermore, for some irrelevant technical reasons, in this example we have not used the built-in polymorphic list datatype, and we have defined the list of transactions without the using the synonym type Transaction. Hence our type definitions are as follows:

:: Transaction :== (!Int, !Int) // date and amount
:: List = Nil | Cons !(!Int,!Int) !List // list of transactions
:: DB :== (!Int, !List) // sum and transactions

One can develop some basic operations for manipulating the database. A new (empty) database can be created by invoking the function newDB. Functions insertDB, removeFirst and sortDB can be regarded as state transition functions, which describe how the state of a database will change. In the FP terminology, these functions compute the “new value” of the database from the “old value”. Function insertDB extends the database with a new transaction, removeFirst removes the first transaction from the list of transactions, and sortDB sorts the transactions by date. (In this simple example program we might, but not obliged to, assume that the date is a primary key.)

newDB:: -> !DB
newDB = (0, Nil)

insertDB:: !(!Int,!Int) !DB -> DB
insertDB t=:(date,amount) (sum,list) = (sum+amount, Cons t list)

removeFirst:: !DB -> DB
removeFirst (sum,Nil) = (sum,Nil) // nothing to remove, skipping
removeFirst (sum, Cons (date,amount) list) = (sum-amount, list)

sortDB:: !DB -> DB
sortDB (sum,list) = (sum, sort_ins list)
The definition of sortDB applies function sort_ins, which implements an insertion sort algorithm. Function insrt (invoked by sort_ins) requires that the operation < be defined for type Transaction. In our example < compares the first field of transactions, namely date.

\[
\text{sort_ins} :: \text{List} \rightarrow \text{List} \\
\text{sort_ins} \ 	ext{Nil} = \ 	ext{Nil} \\
\text{sort_ins} \ (\text{Cons} \ x \ \text{xs}) = \ \text{insrt} \ x \ (\text{sort_ins} \ \text{xs})
\]

\[
\text{insrt} :: \text{Transaction} \times \text{List} \rightarrow \text{List} \\
\text{insrt} \ e \ \text{Nil} = \ \text{Cons} \ e \ \text{Nil} \\
\text{insrt} \ e \ \text{ls} = : (\text{Cons} \ x \ \text{xs}) = \ \text{if} \ (x < e) \ (\text{Cons} \ x \ (\text{insrt} \ e \ \text{xs})) \ (\text{Cons} \ e \ \text{ls})
\]

\[
\text{instance} < \text{Transaction} \text{where} \ (<) \ a \ b = (\text{fst} \ a) < (\text{fst} \ b)
\]

Now we can develop a simple “scenario” application, which is built upon the basic operations. One can imagine that this scenario simulates an interactive session between a database management application and an end-user. The input to this scenario is a database and a transaction. First we insert the transaction into the database, then we sort the resulting database, finally we remove the first transaction stored in the (sorted) database.

\[
\text{scenario} :: \text{DB} \times (\text{Int} \times \text{Int}) \rightarrow \text{DB} \\
\text{scenario} \ \text{db} \ t \\
\hspace{1cm} \# \ \text{db} = \text{insertDB} \ t \ \text{db} \\
\hspace{1cm} \# \ \text{db} = \text{sortDB} \ \text{db} \\
\hspace{1cm} \# \ \text{db} = \text{removeFirst} \ \text{db} \\
\hspace{1cm} = \ \text{db}
\]

3. Object abstraction

Before formulating and proving temporal properties of our program, we have to define “abstract objects”, that is we have to specify which functional (mathematical) values correspond to different states of the same abstract object. Here we will introduce a single abstract object, a database, whose consecutive states will be the value given as argument to scenario, and the values computed by functions insertDB, sortDB and removeFirst, respectively. Note that the program text has also suggested the very same abstraction: the programmer chose the same name, viz. db, to different functional values. This was possible due to the scoping rules of Clean with respect to the “let-before” (#) construct. The scenario function could have been equivalently defined without hiding of variables in this way:

\[
\text{scenario} :: \text{DB} \times (\text{Int} \times \text{Int}) \rightarrow \text{DB} \\
\text{scenario} \ \text{db} \ t \\
\hspace{1cm} \# \ \text{db1} = \text{insertDB} \ t \ \text{db} \\
\hspace{1cm} \# \ \text{db2} = \text{sortDB} \ \text{db1}
\]
The names of the functional variables that constitute the object abstraction are \(\text{db}, \text{db1}, \text{db2} \) and \(\text{db3} \). Note that the choice of the values for the states of the abstract object also determines the state transitions we have to deal with during the proof of temporal properties.

How can a programmer supply this information? In our framework an integrated programming environment (similar to the one currently available for Clean, [16]) will help the programmer develop, and reason about, programs. This IDE will store various data about a program in a relational data base. This data base contains different sorts of compile time information (e.g. symbol table, syntax tree) which enable Model-View-Controller based refactoring tools to operate on these data [17]. One of the views is the “source code view”, another view may contain the properties of the program and the proof of these properties. Certain views will be human readable, other views will be processed by different programs. For example, it will be possible to create a view in a format in which Sparkle internally represents Clean programs.

Among the controllers there will be one which allows the programmer to select—e.g. in a graphical user interface, by mouse-clicking on the source code—the variables, or expressions that belong to the state transition tree of an abstract object. Another controller will make it possible to enter temporal logical properties of the abstract object. Then these temporal logical properties can be proven by an appropriate theorem prover. To accomplish this goal, the current theorem prover for Clean (Sparkle) has to be altered: we will extend it with tactics (elementary proof steps) to handle certain temporal logical operators. Since this enhanced theorem prover is not yet implemented, in this case study will use Sparkle where possible, and simulate the application of the lacking (temporal logical) tactics by hand.

4. An invariant of the abstract object

The invariant property of the abstract object chosen in the previous section will be the following: if we sum up the amounts of money appearing in the transactions stored in the second part of the database, we get the first (“sum”) part of the database. In the current version of Sparkle, the definitions (functions and predicates) required to formulate a theorem should be given in Clean. We will make use of a function that sums up the amounts appearing in a list of transactions.

\[
\text{sumUp} :: !\text{List} \to \text{Int}
\]

\[
\text{sumUp Nil} = 0
\]

\[
\text{sumUp (Cons (date,amount) list)} = \text{amount} + \text{sumUp list}
\]

Let us denote the abstract object “database” by \(\text{db} \). At first glance, we could formulate an invariant property of \(\text{db} \) in the following way:

\[
\text{fst } \text{db} \quad = \quad \text{sumUp } (\text{snd } \text{db})
\]
When reasoning about programs, one must always take undefined results into account. For example, in a functional language like Clean it is possible to apply partial functions, or to work with lazy or even infinite data structures. Certain use of partial functions and lazy data structures can lead to run-time errors or infinite computations. In a theorem prover such “undefined results” can be modelled by a special \perp (undefined) value. In Sparkle the predefined predicate `eval` is used to express that an expression does not contain undefined parts, that is the “complete evaluation” of the expression is possible. For the user-defined data types the programmer should provide the appropriate definitions of `eval`.

```haskell
instance eval Transaction where eval (date,amount) = eval date && eval amount

instance eval List where eval Nil = True eval (Cons t ts) = eval t && eval ts

instance eval DB where eval (sum,list) = eval sum && eval list
```

Now it is possible to put down the required invariant property of db:

\[
I[\mathit{db}] : \quad \text{fst } \mathit{db} = \text{sumUp (snd } \mathit{db}) \quad \land \quad \text{eval } \mathit{db} \quad (1)
\]

Next we will formulate an initial property $Q(\mathit{db}, t)$ of `scenario`.

\[
Q(\mathit{db}, t) : \quad \text{eval } \mathit{db} \quad \land \quad \text{eval } t \quad \land \quad \text{fst } \mathit{db} = \text{sumUp (snd } \mathit{db}) \quad (2)
\]

Finally we will formulate that $I[\mathit{db}]$ is an invariant property of `scenario` with respect to the initial property $Q(\mathit{db}, t)$.

\[
I[\mathit{db}] \in \text{inv}_{\text{scenario}}(Q(\mathit{db}, t)) \quad (3)
\]

Besides the Clean definitions and the description of the abstract object db, definitions (1,2) and statement (3) will be the input to the theorem prover.

5. The proof of the invariant property

The theorem prover for Clean which contains temporal logical tactics is not yet implemented. Hence the first step of the proof discussed in this section was performed by hand. This first step is the application of the not yet implemented tactic “inv” on our goal, namely statement (3), which results in subgoals (4–7). For the sake of readability we will use that definition of `scenario` which does not contain hiding of variables. Subgoal (4) describes that $I[\mathit{db}]$ holds initially, and
subgoals (5–7) describe that $I(\mathbf{db})$ is preserved by each state transitions of \mathbf{db}. None of the four subgoals contain temporal logical operators, so we can prove all of them with Sparkle. The details of these proofs can be found in [15].

The first resulting subgoal, subgoal (4), describes that $I(\mathbf{db})$ holds initially: precondition $Q(db, p)$ guarantees that the first (initial) state of \mathbf{db}, namely db, satisfies I. Formally, we require that $Q(db, p) \Rightarrow I(db)$. If we unfold the definitions for Q and I, we obtain the following theorem.

\[
\begin{align*}
\text{(eval } db) \land \text{(eval } t) \land \left((\text{fst } db) = (\text{sumUp } (\text{snd } db)) \right) & \Rightarrow \\
\text{(eval } db) \land \left((\text{fst } db) = (\text{sumUp } (\text{snd } db)) \right) &
\end{align*}
\]

This theorem is easy to prove. In Sparkle it takes 5 proof steps to complete this proof.

The state transitions for our abstract database object \mathbf{db} correspond to the application of functions insertDB, sortDB and removeFirst. Subgoals (5–7) describe that $I(\mathbf{db})$ is preserved by each of the three state transitions. We can express this with the help of the weakest precondition operator [9], wp. For each state transition s, the following should hold:

\[
I(\mathbf{db}) \Rightarrow wp\left(s, I(\mathbf{db}) \right)
\]

Refer to [5] to see how wp can be interpreted in this context. In subgoals (5–7) the temporal logical operator wp has already been eliminated.

The first state transition of \mathbf{db} corresponds to the following computation of the value db_1 from db: $db_1 = \text{insertDB } db \ t$. Note that this computation is parametrized by another value, t, which is an argument of function scenario. In such a case we can introduce a hypothesis about t, based on the initial condition $Q(db, t)$ of the invariant property we are currently proving. This hypothesis tells us that t does not contain undefined parts: eval t. If t were not an argument of scenario, but a value defined inside scenario, we could introduce a hypothesis based on its definition. This case study, however, is lacking such an example.

\[
\begin{align*}
\text{(eval } t) \land I(db) \land (db_1 = \text{insertDB } db \ t) & \Rightarrow I(db_1) \\
I(db_1) \land (db_2 = \text{sortDB } db_1) & \Rightarrow I(db_2) \\
I(db_2) \land (db_3 = \text{removeFirst } db_2) & \Rightarrow I(db_3)
\end{align*}
\]

The proofs of goals (5–7) requires about 4000 proof steps in Sparkle.

6. Conclusions and future work

In this paper we have studied a method that allows the definition and proof of temporal properties (namely invariants) in pure functional languages. We have pre-
sented the concept of object abstraction, which is based on contracting functional variables into objects with dynamic (temporal) behaviour. We have introduced a notion of state transitions and we have illustrated on a very simple example how an invariant of an abstract object over a set of atomic state transitions can be proved. The proof was constructed in a theorem prover (Sparkle) except for a single proof step. The missing step applied a tactic (inv) that is not yet implemented in the theorem prover. The case study identified the method of producing subgoals during the application of this tactic. The implementation of this tactic will be based on this result.

The proof we have constructed in this case study is represented in a completely machine processable form. As a consequence, not only the program, but also its proved invariant property and the proof itself can be stored, transmitted or checked by a computer.

The case study in this paper does not address some issues which may be important for more sophisticated examples. We have considered a situation where the atomic state transitions of an abstract object were not distributed in more than one function definition. We will have to develop further case studies in which the analyzed function (like scenario in our example) contains “compound state transitions”, namely it invokes other functions that contain more than one atomic state transitions themselves. The solution to this problem will be useful to handle recursive functions.

Our approach defines an alternative semantics of Clean programs. According to this alternative semantics, some evaluation steps correspond to state transitions over an abstract state space. The abstract state space is created by the object abstraction, where series of pure functional values are associated to an abstract objects. This methodology will be supported by an extension to Sparkle [4], the theorem prover tool for Clean, to make reasoning about temporal properties of interactive, parallel or distributed Clean programs possible. We plan to integrate the extended theorem prover into a program development and code manipulation/refactoring environment. Programs containing abstract objects will be presented to the theorem prover in a format similar to the one Sparkle currently uses to represent Clean programs and proofs, but extended with a representation of abstract object.

Our model is straightforward to extend to a full temporal logic. We can prove all temporal properties which are based on the “nexttime” operation, i.e. on the calculation of the weakest precondition [2, 10]. We intend to prove general safety properties (unless), and progress properties (leads-to, ensures) for Clean programs in the future.

References