
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Clean-CORBA Interface Supporting
Pipeline Skeleton∗

Zoltán Hernyáka, Zoltán Horváthb, Viktória Zsókb

aDepartment of Information Technology
Eszterházy Károly College
e-mail: aroan@ektf.hu

bDepartment of Programming Languages and Compilers
Eötvös Loránd University, Budapest

e-mail: {hz, zsv}@inf.elte.hu

Abstract

Modern functional programming deals with parallel and distributed com-
putation. The lazy functional programming language Clean was extended for
cluster computations using CORBA as middleware.

The earlier Clean-CORBA interface supports developing and using skele-
tons for distributed and cluster computing in a limited way only. The inter-
face user encounters three major problems. Clean skeletons are parameterized
by types while the IDL compiler does not generate stubs for polymorphic func-
tions. The other major problem is that there is a need for such a component
of the middleware system which starts the skeleton according to a strategy
given as a parameter. The third problem is that the actual Clean-CORBA
does not support asynchronous communication.

The present paper proposes solutions for the above problems. By intro-
ducing a pattern language for generic description, the Clean-CORBA skele-
tons are extended with the description of the formal parameters: type pa-
rameters and strategy parameters. The user of the skeletons provides the
description of the actual parameters corresponding to the formal parame-
ters. Additionally to the Clean and the IDL compilers, we propose a code
generator, which interprets the formal and actual parameters, generates IDL
descriptions and instances of the server objects according to the actual pa-
rameters, invokes the IDL and the Clean compilers for generating stubs and
objects. The second problem is solved by running such objects at each com-
puting node, which starts the components of the skeleton according to the

∗Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr. T037742
and by Bolyai Scholarship of Hungarian Academy of Sciences.

191

192 6 th International Conference on Applied Informatics

actual strategy. The implementation of the channels supports the asynchro-
nous communication.

Categories and Subject Descriptors: D.1 Programming Techniques:
D.1.1 Applicative (Functional) Programming, D.1.3. Concurrent Program-
ming.

Key Words and Phrases: Skeleton, distributed functional programming,
Clean, CORBA, design patterns, middleware.

1. Introduction

One of the major research directions of the parallel functional programming [1]
is the use of skeletons as higher order functions for computation patterns. The
functional skeletons can be triply parameterized by types, by functions and by
evaluation strategies [2].

A solution based on multiparadigm programming was proposed in order to sup-
port the skeletal distributed programming with functional components written in
Clean [3]. The lazy functional programming language Clean was extended for clus-
ter computations using CORBA as middleware. Clean components are CORBA
clients connected by communication channels implemented as CORBA server ob-
jects. However the user of the Clean-CORBA interface encounters some impedi-
ments in the development of skeletons for distributed and cluster computing. The
IDL to Clean compiler has no support for parameters of polymorphic types. The
IDL type any allows data types to be examined and extracted using the type code
interface, but it is not a complete solution for the problem. The CORBA stub
generation for polymorphic functions are not supported.

An alternative solution is proposed in the next section, which introduces control
language elements for the application of the Clean-CORBA skeletons. The client
and server objects are described as patterns with type parameters. Additionally
to the Clean and the IDL to C compilers we propose a code generator. The code
generator interprets the parameters of the skeleton, instantiates IDL descriptions,
client and server codes according to the actual parameters, invokes the IDL to C
and the Clean compilers for generating stubs and objects.

The other major problem is that there is a need for such a component of the
middleware system which starts the application of the skeleton according to the
strategy parameter. The instantiated client and channel objects are distributed
over the computation nodes of the cluster by a generated starting script.

In the earlier Clean CORBA interface receive operations lead to busy waiting
when the channel was empty. The new implementation of channel objects is based
on the C-CORBA interface. Asynchronous communication is enabled due to the
multithread-safe server architecture. Whenever a Clean client code effectuates
a retrieve operation on an empty channel, the client is automatically suspended
without busy waiting.

Z. Hernyák, Z. Horváth, V. Zsók: Clean-CORBA Interface Supporting . . . 193

2. The pipeline skeleton

This paper deals with Clean skeletons which are parameterized by types, func-
tions and strategies. An important skeleton, the pipeline skeleton is used as case
study. The proposed solutions for the deficiencies identified in the introduction
are presented through the pipeline problem. The implementation is tested on the
cluster. The programming environment is built up of several layers.

The starting layer is the abstract description of the problem, the pipeline skele-
ton. The abstract pipeline contains annotations in order to separate the description
of the computation from the details of the concrete topology and granularity of the
computation nodes.

distributed module pipe_one

DistrStart = pipesk ’on’ data ’applying’ functionlist ’with’ strategy
where

data = [i \\ i <- [1.0 .. 1600.0]]
functionlist = [f0] ++ [f \\ i <- [1..10]] ++ [fn]
strategy = par

Several working phases are identified from the starting point until the program
produces the final result (figure 1).

Distributed skeleton with actual parameters

PRE-COMPILER
Function expression
Type information
Strategy information

Skeleton
source codes } on-line

memory
representation

channel.idl

channel.cc

channel.h

Lock.c

Lock.h

server.cc

C

U

U

C

C

C

T

T

T

T

channel.idl

channel.cc

channel.h

client.cc

Channel.DCL

Channel.ICL

clean_main.icl

C

U

U

C

C

C

C

T

T

T

T

T

T

T

C
h
a
n
n
e
l

s
o
u
rc

e
 c

o
d
e
s

C
o
m

p
u
ta

ti
o
n
a
l
n
o
d
e

s
o
u
rc

e
 c

o
d
e
s

Figure 1: Working phases

The meanings of the letters on the figure 1 are the following:

- C denotes a source code generated by our pre-compiler.

194 6 th International Conference on Applied Informatics

- U denotes a source code generated by a third-party utility (in this case by
the IDL to C compiler).

- T Ű denotes a source code which depends on the actual parameters of the
distributed skeleton. The type information is included by the pre-compiler.

- T Ű also denotes a code which depends on the actual parameters of the
distributed skeleton, but it depends in an indirect way (this code is generated
by a 3rd party utility based on a file which directly depends on the type
information).

The distributed source codes are generated from the skeleton source codes,
which are stored in a directory as separate files. The pre-compiler uses these files,
modifies them according to the actual information, and generates the source code
for all the CORBA channels and the Clean computational nodes. See the figure 1
for the set of generated files. These source files containing the skeleton source code
usually have the same names as the generated files – except the clean_main.icl
files.

Detailed description of the working phases is given below.

1. The distributed skeleton with actual parameters is passed through a pre-
processor phase at the first step. The pre-compiler analyses the higher order
description of the computation. This description is the pipeline skeleton
(pipesk) indeed, which is parameterized with actual parameters. The pre-
compiler separates and identifies all the information necessary to generate
the parts of the distributed application. It collects the component functions,
the type information regarding the input data and functions. The type in-
formation is needed for establishing the type of the communication channels.
The topology of functions which is determined by the strategy is defining the
relationships and the communication channels between the client programs
evaluating and computing the component functions.

2. There are three generic skeleton components written for the pipeline compu-
tation. They contain the channel operations of the client programs, which are
the primitives of channels: send, sendStream, collectStream. The primi-
tives are parameterized by types and by functions.

The pre-compiler uses and completes the components – selecting the suitable
one from the skeleton source codes. The first component produces element-
wise the data needed for the pipeline.

This component is stored in the skeleton source code directory as
clean_first.icl.

module clean_main
import Channel, StdEnv, StdDebug

Start w
#! w = Corba_INIT w

Z. Hernyák, Z. Horváth, V. Zsók: Clean-CORBA Interface Supporting . . . 195

// CORBA initialization
#! (chn_out, w) = Channel_FIND <CHANNEL_FIRST> w

// the output channel
#! w = sendStream <FUNCTION_NAME> d chn_out w

// data sending to the first channel
#! w = Channel_FINISHED chn_out w

// sending the extremal data
= w

// sending the data recursively
sendStream f0 [] chn w = w
sendStream f0 [lh:lt] chn w = sendStream f0 lt chn w2

where
w2 = Channel_STORE chn (f0 lh) w

The second component elementwise processes the data. This is stored in the
skeleton source code directory as clean_immed.icl.

module clean_main
import Channel
import StdEnv

Start w
#! w = Corba_INIT w // CORBA initialization
#! (chn_inp, w) = Channel_FIND <CHANNEL_INP> w // the input channel
#! (chn_out, w) = Channel_FIND <CHANNEL_OUT> w // the output channel
#! w = ewp <FUNCTION_NAME> chn_inp chn_out w

// data processing
#! w = Channel_FINISHED chn_out w

// sending the extremal data
= w

ewp f channel_inp channel_out w
#! (ok, data, w2) = Channel_RETRIEVE channel_inp w
| ok == False = w2
| otherwise

#! sentw = Channel_STORE channel_out (f data) w2
= ewp f channel_inp channel_out sentw

The third component elementwise consumes the data from the last channel
of the pipeline using the collectStream primitive. This is stored in the
skeleton source code directory as clean_last.icl.

module clean_main
import Channel,StdEnv

Start w
#! w = Corba_INIT w // CORBA initialization
#! (chnf, w) = Channel_FIND <CHANNEL_LAST> w // the input channel
#! (result, w) = collectStream <FUNCTION_NAME> chnf [] w

// data processing
= (result, w)

196 6 th International Conference on Applied Informatics

collectStream fn channel list w
#! (ok, data, w2) = Channel_RETRIEVE channel w
| ok == False = (reverse list ,w2)
| otherwise

#! (list3, w3) = collectStream fn channel list w2
= ([(fn data):list3], w3)

The pre-compiler completes the skeleton components of the library according
to the collected information and generates the clients. Each client is one
computation node. They are inserted into separate subdirectories in the
same order as it was in the function list of the higher level skeleton. The
formal parameters are replaced by the actual parameters.

3. At the next step the channel interfaces are generated to complete the source
codes of the computational nodes.

The generic IDL file (Channel.idl) has to be instantiated to describe for
every channel the CORBA interfaces.

interface Channel {
char Store (in chn_data data, in unsigned long timeOutSec);
char Retrieve(out chn_data data, in unsigned long timeOutSec);
char Finished(in unsigned long timeOutSec);};

This IDL skeleton is instantiated by the pre-compiler using the type informa-
tion collected at the first phase. The pre-compiler inserts the types, including
its typedef into the skeleton.

typedef double chn_data;

4. The IDL2C utility creates the stubs (Channel.cc, Channel.h) of the instan-
tiated channel. It generates both the server stub and the client stub in C.
These stubs are already instantiated according to the actual type parameter
included into the Channel.idl.

5. The Client.cc file contains the functions to find and use a channel. This
file has to be instantiated according to the actual type of the channel. So the
pre-compiler generates one Client.cc file for every base type used by the
channels.

6. The library contains the Channel.icl and Channel.dcl codes too, which
are Clean-C wrapper templates. This wrapper is the Clean-side image of the
Client.cc file. The pre-compiler generates these files instantiating them to
allow the computational nodes to call the client stub functions from Clean.

7. The Clean client code (clean_main.icl) which evaluates and computes one
component function calls the instantiated client stub functions through the

Z. Hernyák, Z. Horváth, V. Zsók: Clean-CORBA Interface Supporting . . . 197

Clean-C wrapper. This main module is generated by selecting and instantiat-
ing one of the library modules (at this time selecting one of the three generic
skeleton components described at the 2. point).

There are several layers of code reading from and writing to a remote channel
inside the skeleton library. Using these layers properly one can create new
primitive operations and insert it into the library. Let see the structure of
the CORBA server (figure 2), which reads the data element from the input
channel, modifies (takes a computational step on) the data, and sends it
to the next channel (the broken lines mean the communication through the
network).

Calling sequence inside a computational node

START entry point Application main cycle

Retrieve one data element

Channel_RETRIEVE
Reads one data element

eChannel_RETRIEVE
Deals with the error code

cChannel_RETRIEVE
C function wrapper code

channel_retrieve
C function

Corba operation
Corba library function

Channel buffer lock
Exclusive access to the channel buffer

Retrieve one element from the buffer
Wait if empty (or timeout happens)

Release exclusive lock
Return with the data element

A
p
p
ly

 t
h
e
 c

o
m

p
o
n
e
n
t
fu

n
c
ti
o
n

o
n
 o

n
e
 d

a
ta

 e
le

m
e
n
t

Send the modified data element

Channel_STORE
Stores one data element

eChannel_STORE
Deals with the error code

cChannel_STORE
C function wrapper code

channel_store
C function

Corba operation
Corba library function

Channel buffer lock
Exclusive access to the channel buffer

Store one element to the buffer
Wait if full (or timeout happens)

Release exclusive lock

Remote input channel Remote output channel

C
le

a
n

a
b

s
tr

a
c
t

C
le

a
n

 -
 C

in
te

rf
a
c
e

C
o

rb
a

s
tu

b

Figure 2: The structure of the CORBA server object

8. The same steps are made for a channel. The implementation of the channels
supports the asynchronous communication and the busy waiting problem

198 6 th International Conference on Applied Informatics

is solved too. Whenever a Clean client code effectuates a retrieve opera-
tion on an empty channel, the client is automatically suspended. There are
two threads which are connected to the channel: the retrieve and the store
threads. The server is multithread-safe.

Instantiating the Channel.idl the Corba IDL2C can generate the same
Channel.cc and Channel.h stubs. Afterwards the Server.cc is generated,
which handles the channel operations using the thread synchronization meth-
ods stored in the Lock.c file. This locking mechanism does not depend on
any type information. The generic files have the same name in the skeleton
library.

9. Makefiles are also generated for compiling the programs. In addition to these
there is a script file written for the distribution of the client codes over the
cluster. This identifies the computers, maps the files to them and generates
the starting scripts.

3. Measurements

Several measurements were done. Here we present two charts. The first one
(figure 3) shows the decreasing computation time when more (up to ten) computers
were added to the list of the computation nodes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9 10

C
om

pu
ta

tio
n

tim
e

Number of computation nodes

Computation time for different input sizes

100 data
200 data
400 data
800 data

1600 data

Figure 3: Computation time depending on the number of computation nodes

Z. Hernyák, Z. Horváth, V. Zsók: Clean-CORBA Interface Supporting . . . 199

The second chart (figure 4) is illustrating the speedup obtained in case of differ-
ent number of computation nodes. The pipeline skeleton had as function parameter
a list of weighted functions. We can observe a significant speedup when the number
of computation nodes are increased.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 200 400 600 800 1000 1200 1400 1600

Sp
ee

du
p

Size of input

Speedup with weighted function

2 nodes
4 nodes
8 nodes

10 nodes

Figure 4: Speedup

4. Conclusions and future work

The pipeline skeleton is parameterized by type and by function. Our pre-
compiler generates stubs for polymorphic functions. The middleware system starts
in distributed way the computational threads evaluating the component functions.
The asynchronous communication is enabled by our middleware due to the C-
CORBA channel interfaces. The distributed evaluation of functions and the com-
munication between clients needs high-level process description and control mech-
anism [7]. In the future we would like to specify a control language for the spec-
ification of the abstract skeletons. A strategy description is needed for controlled
behaviour of the process-network. The high-level language elements will coordinate
the component functions and the process-network in the distributed environment.
These elements will hide all the technical details of the distributed environment
from the user.

200 6 th International Conference on Applied Informatics

5. Acknowledgements

Here we thank to Péter Turi for the implementation of the starting scripts. We
also thank to Csaba Seres for helping at the technical support of the cluster.

References
[1] Cole, M.: Algorithmic Skeletons, In: Hammond, K., Michaelson, G. (Eds.): Research

Directions in Parallel Functional Programming, pp. 289-303, Springer-Verlag, 1999.
[2] Horváth Z., Zsók V., Serrarens, P., Plasmeijer, R.: Parallel Elementwise Processable

Functions in Concurrent Clean, Mathematical and Computer Modelling, No. 38, 2003,
pp. 865-875.

[3] Zsók V., Horváth Z., Varga Z.: Functional Programs on Clusters In: Striegnitz,
Jörg; Davis, Kei (Eds.): Proceedings of the Workshop on Parallel/High-Performance
Object-Oriented Scientific Computing (POOSC’03), Technical Report, FZJ-ZAM-IB-
2003-09, July 2003, pp. 93-100.

[4] Ugron B., Hajdara Sz.: Synthesis of the synchronization of pipeline systems, In: Pro-
ceedings of the 6th International Conference on Applied Informatics, Eger, Hungary,
January 27-31, 2004, to appear.

[5] Berthold, J., Klusik, U., Loogen, R., Priebe, S., Weskamp, N.: High-level Process
Control in Eden, In: Kosch, H., Böszörményi L., Hellwagner, H. (Eds.): Parallel
Processing, 9th International Euro-Par Conference, Euro-Par 2003, Proceedings, Kla-
genfurt, Austria, August 26-29, 2003, Springer Verlag, LNCS Vol. 2790, pp. 732-741.

[6] Mowbray, T. J., Malveau, R. C.: Corba Design Patterns, Wiley Computer Publishing,
1997.

[7] Pena, R., Rubio, F., Segura, C.: Deriving Non-Hierarchical Process Topologies, In:
Hammond, K., Curtis, S. (Eds.): Trends in Functional Programming, 2002, Intellect,
Vol 3., pp. 51-62.

Postal addresses
Zoltán Hernyák
Department of Information Technology
Eszterházy Károly College
H-3300, Eszterházy tér 1., Eger
Hungary
Zoltán Horváth
Department of Programming Languages and
Compilers
Eötvös Loránd University
H-1117 Pázmány Péter sétány 1/C., Budapest
Hungary
Viktória Zsók
Department of Programming Languages and
Compilers
Eötvös Loránd University
H-1117 Pázmány Péter sétány 1/C., Budapest
Hungary

