
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Distributed Computing Based on Clean
Dynamics∗

Hajnalka Hegedűs, Zoltán Horváth

Department of Programming Languages and Compilers, Faculty of Informatics,
Eötvös Loránd University, Budapest

e-mail: heha@inf.elte.hu, hz@inf.elte.hu

Abstract
Clean is a lazy, pure functional language. The relatively new language

construct, called dynamic, allows of sending, storing and reloading data and
even functions in a type safe way. Thus Clean can be used as the base of
writing distributed, mobile code. Our aim is to develop a middleware based
on Clean dynamics which supports writing distributed functional programs
such as for computations in Grid environment. Our goal is to support lo-
cation, migration, persistence and failure transparency. An important issue
is scalability. The proposed system supports asynchronous and synchronous
communication and property-carrying code.

This paper is a requirement and feasibility analysis and compares the
system with the corresponding language elements of JoCaml (a language for
concurrent distributed mobile programming based on non-pure functional
language Caml).
Categories and Subject Descriptors: C.2.4 [Computer-Communication
Networks]: Distributed Systems; D.1.1 [Programming Techniques]: Applica-
tive (Functional) Programming;
Key Words and Phrases: mobile code

1. Introduction

This paper is a requirement and feasibility analysis and compares the system
with the corresponding language elements of JoCaml (a language for concurrent
distributed mobile programming based on non-pure functional language Caml).

In distributed functional programming one uses a functional computational lan-
guage and a distinct control language. In our case computational language is Clean.
We will design a Clean-based concurrent control language.

∗Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr. T037742
and the Bolyai Research Scholarship.

181

182 6 th International Conference on Applied Informatics

Agents provide a flexible way to use data stored on remote servers or write
mobile code. They can move around network nodes and collect data, perform
operations on each node or simply supply a service. This indicates they are really
useful when it comes to distributed computation so we will use agents in our system.
The base of our agents is a Clean dynamic which contains the (type safe) data and
code of the agent. Our agents also have an execution state which stores the values of
executed subexpressions, parameters etc. and a control state which contains general
data on the agent (see figure 4). In our system one can also include semantical
properties in the agent which can be checked by the recipient who than can decide
to let the agent execute or not.

For the understanding the further sections of the paper, we have to spear a
few words on JoCaml agents as well. JoCaml have language structures called
location-s, which can be organised to a hierarchical structure. Each location can
have sublocations and a location can migrate under an other location whenever its
necessary.

Returning to our system, our language extension should contain primitives for
building and migrating and receiving an agent. It is also important to let the
agent initiate its migration. Though language primitives are not sufficient to write
distributed applications. We also need a middleware to support data sharing and
communication. The middleware should take care of restarting agents when the
underlying system crashes, keep track of the shared resources etc. It also has to
hide the heterogeneous architecture and provide a uniform way of communication.

In this paper we draw up the requirements against on our system, sketch a way
how can these requirements can be met and describe how JoCaml meets or doesn’t
meet them.

2. Requirements for Agent Languages

There are three requirements, an agent language should meet [3]. These are the
following:

• code manipulation tools,

• heterogeneity,

• performance.

Code manipulation tools provide means for identifying, transferring and exe-
cuting agents. Identifying the code of an agent is essential when we need to migrate
the agent and not as trivial as it seems. The agent should be self containing enough
to be able to run at the remote site where it migrates. In JoCaml, a location can
call back to its originating site, and is able to use every function which was local to
it at the place of its definition. See 2.1 as an example [4] of an agent calling back
to its originating site.

H. Hegedűs, Z. Horváth: Distributed Computing Based on Clean Dynamics 183

Example 2.1.
let def new_cell there =
let def log s = print_string ("cell "^s^"\n"); reply in
let loc applet
def get() | some! x = log ("is empty"); none(); reply x
and put x | none!() = log ("contains "^x); some x | reply
do {go there; none ()} in
reply get,put
;;

The example defines a buffer, new_cell which can contain one value and has a
destructive read. This means, that in parallel with a reading operation the buffer
becomes empty. The operations of the buffer are defined within a location, applet.
This location moves under an other location (there) which is given as a parameter
for new_cell. The definition of get and put is irrelevant from our point of view, the
only thing the reader should consider, that both definitions have calls to log, so we
can track the usage of the cell from the originating location. log will be accessible
even when it migrates under location where. So we can conclude that when a
location migrates it keeps its original communication capabilities unaffected. Thus
the code of an agent will only contain the code defined within a particular location.
When transferring a location, we don’t need to pack anything else together with
the code, the runtime system will take care of the existing communication links so
everything the agent was able to use at its originating site, will be accessible from
the new site as well. After a location migrates under an other location, it behaves
like a local function so there is no need to have distinct primitives to execute it.

Callbacks to the originating site has drawbacks. One is that execution time can
increase painfully when a location has many callbacks to its originating site and
the underlying network is slow. The other drawback is that the originating site has
to be online all the time. If network connection breaks, the agent will fail. Thus
in our system, we try to avoid callbacks as much as possible. The base of an agent
in our system is a dynamic, which can be packed and sent to an other site using
the sendDynamic and receiveDynamic functions of our experimental Clean version
[6]. To avoid callbacks, everything which is referenced from the dynamic, must be
packed together with it. This means that sendDynamic and receiveDynamic needs
to compute the transitive closure of reference chains. After receiving a dynamic,
one can use it as a local data.

Heterogenity is also an important issue in designing an agent language. JoCaml
supports Unix and WindowsNT platforms. Since the WindowsNT version is based
on Cygwin, it is like enough that agents can migrate from one platform to other
with no difficulty.

Clean supports a bit more platforms: Windows, Linux, Solaris and PowerMac.
Since the representation of dynamic contains symbolic native code, its very likely to
be transferable between platforms based on the same architecture (e.g. Windows
and Linux ix86). Although it might be very difficult to transfer code to the other
architectures so the prototype of our system will only support Windows and Linux.

184 6 th International Conference on Applied Informatics

Its really hard to measure performance. Good performance means that the code
of agents should be kept reasonably small (which is easy in JoCaml because of the
presence of callbacks but a bit more complicated in Clean). We also need agents
to be easily transferable and executable. It always depends on the application
which aspect is the most important. For example when we have an overladen site
which delegates work to other sites once in a while, its better to have large but
self containing agents then using callbacks and increasing the load of the already
overladen site.

Clean’s self containing agents can be really large since normally we would need
to pack the whole standard environment together with the dynamic. Though the
sender and the receiver can communicate, and if the receiver has the correct version
of a function used by the dynamic1, we wouldn’t need to pack the function together
with the code, the recipient’s copy can be used instead.

3. Optional Elements of Agent Languages

There are features that are not essential for agent languages but can make life
easier. These are the following [3]:

• remote resource access,

• strong typing,

• automatic memory management,

• stand alone execution,

• security.

Remote resource access in this respect means, that the agent should be capable
of using the resources of their eventual execution environment. In JoCaml, one can
use any registered resource after lookup (see example 3.1) and any resource which
was local to its definition (as in example 2.1).

Example 3.1. [4]

spawn{ let def f x = reply x*x
in Ns.register "square" f vartype; };;
#
spawn{ let sqr = Ns.lookup "square" vartype
in print_int (sqr 2);;

In this example one process registers function f on a name square. The other
process looks it up from the name server and uses it in printing the square of 2.
This also works when the processes run on different machines.

1This can be easily decided by using MD5 checksums in the name of dynamic files [6].

H. Hegedűs, Z. Horváth: Distributed Computing Based on Clean Dynamics 185

In Clean resources (such as the display or files) can be accessed using unique
types. Currently dynamic and unique types can’t be used together (e.g. a dynamic
can’t contain a unique type), because of the differences between the two file systems.
There is a research in progress to make this feature available [7].

Strong typing provides a way of low level semantical checking. It helps the
programmer to find errors which are otherwise really hard to track, and increases
the reliability of the program. Both systems provides strong typing. Using Clean
dynamics one can even send data in a type-safe way.

Automatic memory management is also important for the performance of an
agent system. It reduces the possibility of memory leaks and also helps to avoid
several programming errors (because of the lack of explicit memory allocations).
This is also present in both languages, and our experimental Clean version also has
a dynamic garbage collector [6], which collects and deletes the code of dynamic-
s which are not referenced by any other dynamic. The garbage collection runs
locally on each node participating in the system. This allows us to save space
on a reasonably small price (no network communication is needed for garbage
collection).

Stand alone execution means that agents don’t have implicit callback to their
originating site. When a callback is necessary for the correct operation of agent,
the programmer has to state it explicitly in the code. This means that the agent
should be able to run even when there is no connection with its originating site.
As an example let us consider an agent which is delegated from a laptop computer.
The agents task is to update a distributed database using the data contained in
it. In this case the agent travels around the nodes of the database and does the
necessary modifications. The originating computer can go offline since there is no
need to communicate with it during the update. Later the computer can join the
network again, and the agent can send it a report on the status of the update.

In JoCaml the programmer explicitly defines callbacks by defining functions
outside the location but within the same scope (see example 2.1) or by using lookup.
In our experimental Clean, every function needed is sent together with the agent,
so it doesn’t have to call back to its original location.

The last but probably the most important aspect is security. In our point of
view security means protection from malicious or erroneous code. In our experi-
mental system we use Certified Proved Property Carrying Code (CPPCC) [5] for
guaranteeing good-behaving code. Figure 3 presents a sketch of the system.

At first the programmer should state semantical properties of the dynamic code.
These has to be verified (using the Clean-based verification system, Sparkle). After
that the source code, the native code, the type code (recall that the type code bears
low lever semantical information), the properties, and the sketch of the proof are
packed together and sent to a certifier. The certifier checks if the native code
is generated from the presented source code and if the properties hold for the
given code (using the proof sketch). If it finds everything correct, it generates
a certificate, and packs it together with the native code, the type code and the
properties. This packet is sent back to the writer of the dynamic, who can then

186 6 th International Conference on Applied Informatics

producer of mobile
code

receiver of mobile
code

source code
code

type code
properties

proof

code
type code
properties
certificate

code
type code
properties
certificate

certifier

checkerprover

send it to whoever he wants. The receiver of the code can check the certificate, the
type information and the attached properties to decide if the code is correct and
fits his requirements. This method allows us to use not even type safe code, but
code which is guaranteed to do what we expect it to do, which provides a way of
writing highly reliable systems. Unfortunately JoCaml doesn’t have any security
features at all.

4. Features Needed for Distributed Computation

For writing a distributed application, language primitives supporting agents are
usually not enough. We need features supporting distributed computation such as
particular kinds of transparency and scalability. We will use the definitions of [2].
Providing these features is usually the task of the middleware. We have chosen to
implement the following features:

• location transparency,

• migration transparency,

• failure transparency,

• scalability in size,

• administrational scalability.

Location transparency means that the user of a resource or agent doesn’t need
to know anything about the location of the resource or agent. This transparency
can be achieved by using a name server. That’s exactly as it is in JoCaml (see

H. Hegedűs, Z. Horváth: Distributed Computing Based on Clean Dynamics 187

example 3.1). When a resource needs to be shared, it can be registered to a name
server. After that everyone connected to that name server can lookup the resource.
We would like to use the same approach in our system as well.

Migration transparency means that when a resource or an agent moves, the
users of it doesn’t need to know about the migration. They should be able to use
the agent/resource as before. To achieve this goal, the name server should keep
track of the registered agents/resources. Normally an agent/resource can report
its location after a successful migration. It is also advisable to report before the
migration, because if the migration is unsuccessful, the name server initiate the
resend of the agent. In this case we need to have the copy of the agent at the
original place until the migration completed, though it’s recommended to suspend
the execution of it while the migration is in progress.

Failure transparency means that the user of an agent doesn’t need to know
about the failure of the agent in case it is not the fault of the agent, for example
when the machine where the agent runs crashes. In JoCaml one have only limited
possibilities of exception handling: one can halt a location and all of its sublocations
using the halt primitive. This is a very radical way to handle exceptions and it
lacks the potential of recovery. A bit more sophisticated way to handle exceptions
is to use the fail primitive. fail allows the programmer to detect the failure of a
location and run a process for recovery. This is not sufficient for failure transparency
though can increase the reliability of programs.

What we need is automatic recovery. There are several situations where an
agent can fail:

The site crashes before the agent started to execute. In this case we sim-
ply have to start the execution of the agent when the site recovers.

The site crashes while the agent executing. In this case we have to restart
the agent. We can also use the (possibly) stored subresults of the previous
execution.

The execution of the agent is complete, but further actions needed. In
this case if the agent has to report back somewhere or migrate we can send
the report message or the agent to the appropriate site when the site recovers.

The execution of the agent is complete and no further actions needed.
In this case the agent can simply be dropped.

To handle these situations we need special states for our agents (see figure 4).
Our agent have a control state. It consist information on the state of execution of
the agent, the further actions needed and the owner of the sender. The state of
execution tells the middleware that the agent started or completed its execution
and if the further actions (eg. reporting back or migrating) are completed or not.
This information can be used to decide which of the described situations occurred
when the site crashed. If the crash occurred when the execution was in progress,
the middleware can use the data stored in evaluation state to give the agent the
already computed values.

188 6 th International Conference on Applied Informatics

Control State

owner / sender
state of execution
return value

Evaluation State

return value
parameters
subexpressions

...

certified
mobile code

...

Agent

Scalability have two aspects in our case. When the number of nodes joining the
distributed system grows, the can cause a bottleneck if only a single name server
present (the same holds for the dynamic code library). To avoid bottleneck we need
to have a distributed name server. In this case we need to keep the data stored on
the different servers consistent.

The other aspect is administrational scalability. In our case it is likely that a
new organisation would like to join the distributed system. We need to protect
the nodes of different organisations from each other. For example one can have
data which is private for his organisation but shared with the nodes of the same
organisation. We don’t want this data to be visible for the nodes of the other
organisation. To provide this, we need to attach security information to any shared
resources (eg. who can access the data and what kind of actions can he perform).
This data can be stored in XML.

5. Conclusions

In our paper we overviewed the distributed and agent language aspects of Jo-
Caml and the potentials of Clean which can make it a base of a distributed agent
based system. As we seen JoCaml misses some features we need. JoCaml doesn’t
have any features supporting security and has only very limited tools to achieve
failure transparency. We discussed how these (and several more) features can be
implemented in Clean and gave an outline of our system. We introduced a sketch
of agents which are suitable for our goals.

Though there are features Clean already has (eg. code manipulation tools,
strong typing, automatic memory management and stand-alone execution), there
is still a lot of work to be done. We have to improve features which are partly
implemented in prototypes or not sufficient yet such as security tools, and we
have to implement some features from scratch, like location, migration and failure
transparency and remote resource access. After having all the necessary language
primitives and the middleware, we will have a powerful highly reliable system which
can support the work of programmers a great deal.

H. Hegedűs, Z. Horváth: Distributed Computing Based on Clean Dynamics 189

References
[1] Plasmeijer, R., van Eekelen, M.: Concurrent Clean Version 2.0. Language Report,

Draft, University of Nijmegen, 2001.
[2] Tanenbaum, A.S., van Steen, M..: Distributed Systems. Principles and Paradigmes.,

Prentice-Hall, 2001.
[3] Knabe, F. C.: Language Support for Mobile Agents. PhD. thesis, Carnegie Mellon

University, Pittsburgh, 1995.
[4] Fournet, C., Le Fessant, F., Maranget, L., Schmitt, A.: JoCaml: a Language for

Concurrent Distributed and Mobile Programming, Preliminary Proceedings for the
Fourth Summer School on Advanced Functional Programming, St Anne’s College,
Oxford, 2002, pp. 1-25.

[5] Daxkobler, K., Horváth, Z., Kozsik, T.: A Prototype of CPPCC - Safe Functional
Mobile Code in Clean. Proceedings of Implementation of Functional Languages’02,
Madrid, Spain, Sept. 15-19, 2002. pp. 301-310.

[6] Ivicsics, M.: The Dynamic Type System of Clean. Scientific Students’ Associations
Conference, ELTE, Budapest, December, 2002.

[7] Dutot, P.-F.: Interaction between Dynamics and the Uniqueness typing system Report
of an internship in the University of Nijmegen, 1999.

