
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Describing Semantics of Data Types in
XML

Szabolcs Hajdaraa, Balázs Ugronb

Department of Software Technology and Methodology,
Eötvös Loránd University
ae-mail: sleet@inf.elte.hu
be-mail: balee@inf.elte.hu

Abstract
For the sake of code reusing, it may be useful to be able to transform

program code between programming languages, for which a common format
can be used. We chose XML because it is widely used. If we want to be
able to change between programming languages, the most important thing
is handling data types, and the description of some verifiable semantic prop-
erties. These constraints can be given in XML, too. We are considering the
base issues in this paper, and we suggest solutions for some of these issues. If
a solution was given for translating an abstract program to a concrete code
then a special code generation technique could be implemented.
Categories and Subject Descriptors: D.1.5 [Programming Techniques]:
Object Oriented Programming; D.2.1 [Software engineering]: Requirements
specification; D.2.11 [Software engineering]: Software Architectures – data,
abstraction.
Key Words and Phrases: code reusing, data types, semantics of data
types, program transformation, XML.

1. Introduction

Notion of abstract data types ([1], [2], [3], [4]) is very important from the point of
view of software designing. Different methodologies that support clear description
of data types make designing easier, however a correct, formal way of specification
may be favourable beside the clear description, because of different reasons. In the
context of usability, it is considerable to choose some generally used, well known
formalism for property representing. One of the most widely supported descriptive
language is XML ([6]).

Nowadays, you are expected to be able to formulate different relations between
data types. We mean different types of inheritance or association relationships.

173

174 6 th International Conference on Applied Informatics

If we are made familiar with one of the possible specification methodologies of
data types, it would be advantageous to improve this theoretical approach in the
direction of taking the opportunity to use these results in the subject of practical
software designing. The representation of data types in XML may be a middle
state of different stages of appearance of specification. This presents an opportu-
nity to generate a program code skeleton from the model in a quite general way.
Certain difficulties may come to the surface while you are trying to make an XML
representation for properties and relations.

One of our main goals is to be able to deduce some properties of concrete data
types from the properties that are defined in the specification of the associated
abstract data types – generating the most possible code is of first importance.
Describing concrete data types written in different programming languages seems
to be a good starting-point. So in this paper we are considering the description
of different information in XML about data types written in some programming
language.

2. Describing Data Types in XML

The most issues related describing data types are caused by inheritance and the
consequenced polimorphism and late binding. A relation “ancestor” is introduced
for describing inheritance. This relation shows an other data type, the properties
of which the child data type inherits. Besides, a meta class is introduced, which
shows the programming language the type is written in.

Let us consider the following example:

class A {
public:

virtual void a();
void b(bool c);

};

class B : public A {
public:

virtual void a();
};

One XML description of the above code is the following:

<class meta="yes" name="C++ Class"></class>

<class name="A">
<ancestor>C++ Class</ancestor>
<function visibility="public" type="void" virtual="yes"

name="a">
</function>

Sz. Hajdara, B. Ugron: Describing Semantics of Data Types in XML 175

<function visibility="public" type="bool" virtual="no"
name="b">
<parameter type="bool" name="c">
</parameter>

</function>
<property visibility="protected" type="int" name="p">
</property>

</class>

<class name="B">
<ancestor modifier="public">A</ancestor>
<function visibility="public" type="void" virtual="yes"

name="a">
</function>

</class>

Although our description language (see below) should be used for describing
rules for synthesizing a concrete code from the XML code, we will show an exam-
ple for describing a static semantic property because an example for the original
aim would be too complicated. This mentioned description language can be ap-
plied similary for representating the polimorphism and the late bindig language
independently.

3. Static semantic

Even if a XML description of an abstract data type is available, we may need
to describe some static semantic properties ([5]). For instance, such property may
be a constraint for a number or the type of the parameters of a given method. This
kind of constraints may be needed if we are going to transform a program code
described in XML to some target language. In this case we may wish to check,
whether the XML file satisfies the static semantic constraints, that is, whether the
program in the target language can be generated without certain type of errors.

3.1. Example

Let us consider the following example written in Java:

class JavaClass {
void writeString(String str) {

System.out.println(str);
}

}
...
JavaClass jc = new JavaClass();
jc.writeString("Hello World!");

176 6 th International Conference on Applied Informatics

A simplified XML description of the above code is the following:

<class name="JavaClass">
<function name="writeString">

<parameter name="str">
<type>String</type>

</parameter>
<body>
<use-instance name="System.out">

<use-function name="println">
<use-parameter><parname>str</parname></use-parameter>

</use-function>
</use-instance>

</body>
</function>

</class>
...
<instance class="JavaClass">jc</instance>
<create-instance name="jc" type="JavaClass">
</create-instance>
<use-instance name="jc">

<use-function name="writeString">
<use-parameter>

<data type="String">Hello World!</data>
</use-parameter>

</use-function>
</use-instance>

This XML code may be “faulty” in the sense for example if the parameter
number of a method differs at the calling and at the declaration.

We remark, that it is possible, that even the name of a method differs at the
calling and at the declaration, but this and the similar syntactic errors can be found
out quite simply, so we do not consider these kind of errors.

4. Describing static semantics in XML

We defined static semantic properties in XML (similar description can be found
in [10]). The DTD of the language that we used is the following:

<!ELEMENT stat-sem (sem-rule*)>
<!ELEMENT sem-rule (op)>
<!ATTLIST sem-rule app NMTOKEN #REQUIRED>
<!ELEMENT op (attribute, attribute)>
<!ATTLIST op name (eq | leq | geq)>
<!ELEMENT attribute (child-count | first-parent-by-name)>

Sz. Hajdara, B. Ugron: Describing Semantics of Data Types in XML 177

<!ATTLIST attribute element NMTOKEN>
<!ELEMENT first-parent-by-name (tag-name)>
<!ATTLIST first-parent-by-name element NMTOKEN #REQUIRED>
<!ELEMENT tag-name (instance-type)>
<!ATTLIST tag-name attname NMTOKEN #REQUIRED>
<!ELEMENT tag-by-type (fun-dec-by-class)>
<!ATTLIST tag-by-type element NMTOKEN #REQUIRED

attname NMTOKEN #REQUIRED>
<!ELEMENT fun-dec-by-attr (attribute)>
<!ATTLIST fun-dec-by-attr attname NMTOKEN>
<!ELEMENT child-count EMPTY>
<!ATTLIST child-count element NMTOKEN>

The meaning of the elements of the above DTD are:

stat-sem: this is the root element of our language.

sem-rule: a static semantic rule associated with a program segment that is defined
by a given tag, where the name of the tag is defined by the “app” attribute.

op: an operator (defined by the attribute name) with two arguments.

attribute: the argument of the operator op.

first-parent-by-name: finds the nearest “element” tag from the immediate de-
scendants of the ancestors of the node given by the “sem-rule“ tag.

tag-name: defines the tag that “tag-by-type” will find.

tag-by-type: defines the element tag of which attribute attname is equal with
the value returned by “tag-name” and which element tag is the nearest to the
actual node.

func-dec-by-attr: returns the node representing the class declaration of the in-
stance defined by “tag-by-type”.

child-count: returns the number of the tags that are directly below the given
node.

4.1. The semantics of the previous example

The parameter number checking concerned the method call in the example in
section 3.1 may be described in XML in the following way:

<stat-sem>
<sem-rule app="use-function">

<op name="eq">
<attribute element="use-parameter">

178 6 th International Conference on Applied Informatics

<child-count element="data"></child-count>
</attribute>
<attribute>

<first-parent-tag-by-name element="create-instance">
<tag-name attname="type">

<tag-by-type element="instance" attname="class">
<fun-dec-by-attr attname="name">

<child-count element="paramname"></child-count>
</fun-dec-by-attr>

</tag-by-type>
</tag-name>

</first-parent-tag-by-name>
</attribute>

</op>
</sem-rule>

</stat-sem>

The satisfaction of the static semantic constraints given in this way can be
verified by the parser. The parser can be developed easily on the basis of the above
description.

5. Using the XML Description

This description language (see above) can be used for describing some special
static properties of programs, of course (as in the example). But a special XML
description can be given for every language that can help in generating a real
program code for the abstract XML code. For example, we can describe, how the
virtual or static methods must be compiled or we can describe some properties of
the late bindig (similar to the example above).

In a special way this description can be used to make the XML description to
a concrete program code, so finally we will be able to compile a program from a
language to an another. For this purpose we have to be able to translate a program
from its XML description to an arbitrary language and it is not negligible that if
a program is given in some programming language then its XML descritpion have
to be produced in order to compile this XML description to an other programming
language.

We have shown an example, how to use our description language. This descrip-
tion can be used for describing some special properties of data types. Based on
this description it is straightforward to make a compiler for translating our XML
code to a programming language. But that is quite another thing to generate the
XML description of some program written in a real programming language which
subject we don’t discuss in this paper.

If we can give an XML description for abstract data types that are defined
by mathematical equations, than we can sythesize a program code for the math-

Sz. Hajdara, B. Ugron: Describing Semantics of Data Types in XML 179

ematical specification. So we would be able to generate the program code from
the abstract mathematical specification. Let us remark that producing the XML
description of the mathematical equations is not trivial. In fact it is very difficult
to write a compiler that can translate the XML code containing the representation
of the mathematical equations to a program code. It would be an easier way to
make a more complex XML description for the equations that contains not only
the representation of the equations but some other information would be stored in
the XML code. But in this case producing the XML code is more difficult. The
translation of an abstract data type to a concrete one through the XML description
is an open question.

6. Future work

We gave an XML description for some properties, but we have to produce the
XML description of several additional properties. Finally, we have to write the
compiler which can translate a program to an another program – written in an
another language. That is we have to implement our algorithm.

Starting from the foregoing, we are going to generate the most detailed concrete
code that is possible on the basis of the abstract data type – we will write a special
code generator.

We have to write the abstract data types in XML. An automated method will
be the best that can generate the XML description of the abstract data types that
are given with mathematical equations. In fact we should have to compile the
equations to XML form.

We have to give a well work method to give the XML description of a program.
It is very difficult to do it (the inverse direction is more simplier).

References
[1] L. Kozma: Absztrakt Osztott Adattípusok Egy Specifikációja, Alkalmazott Matematikai

Lapok 7, pp. 331-344, 1981.
[2] L. Kozma: Proving the Correctness of Implementations of Shared Data Abstractions,

International Symposium on Programming 5th Colloquium Turin, Lecture Notes in
Computer Science Vol. 137, pp. 227-241, 1982.

[3] L. Kozma, Z. Laborczi: On Implementation Problems of Shared Abstract Data Types,
Conference on Operating Systems Visegrad, Hungary, Lecture Notes in Computer
Science Vol. 152, pp. 146-152, 1983.

[4] F. Parisi-Presicce, A. Pierantonio: An Algebraic Theory of Class Specification, ACM
Transaction on Software Engineering and Methodology, Vol. 3, No. 2, pp. 166-199,
1994.

[5] M. von der Beeck: A structured operational semantics for UML-statecharts, Software
System Model, pp. 130-141, 2002.

[6] XML home: http://www.w3c.org/XML
[7] T. Bray, J. Paoli, and C. Sperberg-MacQueen: Extendable markup language, 1998.

180 6 th International Conference on Applied Informatics

[8] G. Psaila and S. Crespi-Reghizzi: Adding Semantics to XML, Second Workshop on At-
tribute Grammars and their Applications, WAGA’99 (Amsterdam, The Netherlands)
(D. Parigot and M. Mernik, eds.), INRIA rocquencourt, pp. 113-132, 1999.

[9] Á. Beszédes, Á. Kiss, M. Tarkiainen, R. Ferenc, F. Magyar: Tool for reverse engi-
neering large object oriented software, SPLST, 16-27, 2001.

[10] Ferenc Havasi: XML Semantics Extension, Acta Cybernetica 15, 2002,

Postal address

Szabolcs Hajdara, Balázs Ugron
Dep. of Software Technology and Methodology
Eötvös Loránd University
XI. Pázmány P. sét. 1/c.
H-1117 Budapest, Hungary

