
6 th International Conference on Applied Informatics
Eger, Hungary, January 27–31, 2004.

Type Systems and Program Verification∗

Zoltán Csörnyei

Department of Programming Languages and Compilers,
Eötvös Loránd University, Hungary

e-mail: csz@inf.elte.hu

Abstract

A famous slogan by Robin Milner says that “well-typed programs do not
go wrong”. This slogan essentially asserts the soundness of the type system
of programming languages. The question is whether the type system allows
us to write meaningful and error-free programs.

Proof generation capabilities of proof construction systems are based on
type theory. The base of the theory is the typed λ-calculus. Higher-order
type system of higher-order subtyping, known as Fω

≤ , has been used as a core
calculus for typed languages.

The Curry-Howard isomorphism is a correspondence between type sys-
tems and intuitionistic logic: “types are formulas, and expressions are proofs”.
Types correspond to formulas, and the term “E of type T ” correspond to a
proof of the formula T , where E is a representation, or encoding, of the proof.
For instance, minimal propositional logic corresponds to simply typed λ-
calculus, first-order logic corresponds to dependent types, second-order logic
corresponds to polymorphic types, etc.

Program verification deals with the question whether a triple
{Pre}P{Post} is consistent. This can be formally defined as ∀s.(Pre →
wp(P, Post)). Type systems allow us to express program properties that are
automatically verified.

Techniques for formally specifying, understanding and verifying program
behaviors are available, however, the program verification is very expensive.
Type systems for program languages are well studied, and there are efforts to
refine type systems to allow rich classes of program properties to be expressed
and to combine ideas of type theories, verification and interpretation.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Soft-
ware/Program Verification - Formal methods; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical logic - Lambda calculus and related sys-
tems; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical logic
- Proof theory;

∗Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr. T037742.

119

120 6 th International Conference on Applied Informatics

Key Words and Phrases: λ-calculus, Fω
≤ , proof theory, type system, ver-

ification

1. Introduction

Type theory is a basic formalism and intuitionistic logic can be encoded inside
this theory using the idea of Curry-Howard isomorphism. Due to this constructive
character, type theory can be viewed as a pure functional programming language
and then verifying correctness is reduced to type checking.

The most prominent implementations of type theory are:

• ALF (Chalmers in Göteborg; based on Martin-Löf’s extensional type theory)

• Coq (Inria; based on Calculus of Constructions)

• Isabelle/HOL (based on a predicate calculus extended with terms from the
simply typed λ-calculus)

• LEGO (Edinburgh; implementing Logical Framework, Calculus of Construc-
tions and Theory of Dependent Types)

• NuPrl (Cornell University; another implementation of Martin-Löf’s exten-
sional type theory)

• PVS (based on an extension of simple type theory, namely on the higher-order
logic with dependent types)

• Sparkle (Katholieke Universiteit Nijmegen, Holland; a theorem prover for the
functional programming language Clean. It can be used to prove the partial
correctness of Clean applications. On a smaller scale, it can also be used to
prove useful properties of smaller parts of programs.)

All these systems are used in the verification of both hardware and software,
the formalization of mathematical proofs, and as tools of research.

Type theory is intended as a theory for program constructions. Programmers
write programs and, by using type theory, they prove that their programmes satisfy
the specification. This is called program verification. Another more sophisticated
method is deriving a program from the specification, this is the program derivation.
Type systems support both methods and the programmer bridges the gap between
the specification and the program.

In this process there are two different stages and two languages:

• specification process – specification languages

• programming process – programming languages

Z. Csörnyei: Type Systems and Program Verification 121

Specification is expressed as a set, the set of all correct programs satisfying the
specification, and programming means that the programmer constructs an element
in the set. Programs are expressed in a functional programming language, and the
type system is used for deducing the correctness of the program. As a consequence
of these principles the type system (typed λ-calculus) can be used as programming
language, a specification language and a programming logic, as well.

2. Type systems

Let T ≡ (S, I,R) be a type system, where S is the syntax of expressions and
types, I is for judgements, and R is the set of rules. Type systems fit into the
general framework of formal proof systems.

The most well-known and well studied type systems are

F1 simple typed λ-calculus,
F2 second order (polymorphic) typed λ-calculus,
Fω

≤ higher order typed λ-calculus with subtype.

There are many extensions for type systems for various purposes, for example,
existential type was introduced to study abstract data types, and recursive types
were introduced to describe recursive data structures, respectively.

Dependent type was introduced for types that depend on expressions, this type
is the basis of the Calculus of Constructions (CC) and the Martin-Löf type theory.

2.1. Type system à la Church F1

The syntax S of the simple typed λ-calculus F1 is defined as follows.

〈type〉 ::= 〈base type〉
| (〈type〉 → 〈type〉)

〈λ-expr〉 ::= 〈variable〉
| (λ 〈variable〉 : 〈type〉 . 〈λ-expr〉)
| (〈λ-expr〉 〈λ-expr〉)

Judgements I are of the form

Γ ` wf Γ is a well formed environment,
Γ ` A A well formed type in Γ,
Γ ` E :A E has type A in Γ.

Rules R are:

∅ ` wf
[Env ∅]

Γ ` A x 6∈ dom(Γ)

Γ, x :A ` wf
[Env x]

122 6 th International Conference on Applied Informatics

Γ ` wf A ∈ base type
Γ ` A

[Type Const]

Γ ` A Γ ` B

Γ ` A → B
[Type Arrow]

Γ′, x :A,Γ′′ ` wf
Γ′, x :A,Γ′′ ` x :A

[Val x]

Γ, x :A ` E :B

Γ ` λx :A .E :A → B
[Val Fun]

Γ ` E :A → B Γ ` F :A

Γ ` EF :B
[Val Appl]

The rules of the type system are used for type derivation, for example to deduce
the type of the expression λx : Nat . x we get:

∅ ` wf Nat ∈ K
∅ ` Nat x 6∈ dom(∅)

x : Nat ` wf
x : Nat ` x : Nat

∅ ` (λx : Nat.x) : Nat → Nat

As a part of the operational semantics of type system F1, β-reduction is defined by

(λx : A.E)F →β E[x := F],

and the type rule for this reduction is

Γ ` (λx : A.E)F : B

Γ ` E[x := F] : B
[Conv β]

The type system F1 has Church–Rosser property, i.e. it is a confluent system.
β-reductions preserve the type of expressions:

Theorem 2.1. If E : A and E →+
β F , then F : A.

One of the main results is stated by the theorem of strong normalizing :

Theorem 2.2. There is no infinite reduction sequence on any term.

Three questions for types arise using type system F1,
1. Type checking Given Γ, E and A, is Γ ` E : A derivable?
2. Typeability Given E, find Γ and A such that Γ ` E : A is derivable.
3. Inhabitation Given A, find Γ and E such that Γ ` E : A is derivable.

2.2. Higher order λ-calculus with subtypes

First we extend the type system F1 with type variables, this gives the type
system F2. Polymorphic functions are describable in this system using expressions
as E ≡ Λα.F , and type applications E[A]. If F : B then the type of function E is
∀α.B.

Z. Csörnyei: Type Systems and Program Verification 123

The theoretical properties of F2 are essentially the same as of the system F1,
but more restricted mechanism of recursion may be formulated in its calculus.
The class of functions definable in F2 is much larger than the primitive recursive
functions, for example, Ackermann’s function can be encoded in this system.

Functions in F2 take a type as argument and return a term. In the next type
system F3 it is possible to write functions from types to types.

In the type system F3 type abstractions are introduced and type expressions
are used for the mapping from types to types. The general form of type expressions
are Λα.B. If E ≡ Λα.F is a polymorphic function of type ∀α.B, then the type of
the application E[A] is the type application (Λα.B)A.

A basic difference between ∀α.B and Λα.B is that ∀α.B is a type of a polymor-
phic function, while Λα.B is a function from types to types.

Since type abstractions and applications need to be correct, the type of type
variable has to be introduced. This is the type system F4. The type of types is
called kind. The constant kind with name ? is the kind of types of terms, and in
this type system, if K is a kind, then so is ? → K.

In order to create more general systems, more general kinds must be allowed. By
adding quantifications over constructors of successively higher kinds, the systems
F5, F6, . . . are obtained. The union of all these systems is Fω:

Fω ≡ F1 ∪ F2 ∪ F3 ∪ . . .

where
〈kind〉 ::= ?

| 〈kind〉 → 〈kind〉
and the modified syntax rules are

〈type〉 ::= . . .
| ∀ 〈type-variable〉 : 〈kind〉 . 〈type〉
| Λ 〈type-variable〉 : 〈kind〉 . 〈type〉

〈λ-expr〉 ::= . . .
| Λ 〈type-variable〉 : 〈kind〉 . 〈λ-expr〉

The typing, kinding and derivation rules are not detailed here.
Introducing the subtype relation A ≤ B, the extension of the type system Fω

with subtyping is called the type system Fω
≤ .

There are a number of further possible extensions of Fω
≤ , these extensions can be

used to model important concepts of object oriented programming. Specially, Fω
≤

with records, lists, existential types and recursive types is a basis for constructing
formal models of programming.

Introduction of the depending type of form

Π 〈variable〉 : 〈type〉 . 〈λ-expr〉

leads to the Calculus of Construction (and the Martin-Löf type theory), which is
the base of theorem proving environments.

124 6 th International Conference on Applied Informatics

3. Intuitionistic logic

The important difference between classical logic and intuitionistic logic is that
classical logic is concerned with a notion of truth that is absolute, whereas in
intuitionistic logic statements are based on the existence of a proof. For example,
there is no proof of the law of excluded middle A ∨ ¬A, no method of proving or
disproving for an arbitrary proposition A, therefore the law of excluded middle is
not intuitionistically valid.

3.1. Minimal logic

A variant of propositional logic, in which the only logical connective is the
implication, is called minimal logic. The formulas F are defined by the grammar

F ::= V | F → F

where V may be any propositional variable.
The constructive nature of this logic may be expressed with the Brouwer–

Heyting–Kolmogorov interpretation, which says that

• a variable A is interpreted as an unspecified construction of A,

• a construction of A → B is a method that transforms a construction of A
into a construction of B,

that is, proving a formula is equivalent to creating a construction (proof, function,
program) of it.

A construction for A → A is a function f ≡ λx : A . x, f A →β A.
For technical reasons, we use labeled assumptions: if x is a label, A is a formula,

then we write x : A. Let Γ be a finite set of labeled assumptions. The judgements
of the intuitionistic minimal logic has the form Γ `E A, where A is a formula, E
is the construction (proof) for A and Γ is the environment. Thus for the previous
example we write

∅ `λx:A . x A → A.

The natural deduction proof system for minimal logic is characterized using the
following axiom and three inference rules:

Γ, x : A `x A
[Ident Axiom]

Γ `E B

Γ, x : A `E B
[Assump A]

Γ, x : A `E B

Γ `λx:A .E A → B
[Impl Intro]

Γ `E A → B Γ `F A

Γ `EF B
[Impl Elim]

Z. Csörnyei: Type Systems and Program Verification 125

3.2. Curry–Howard isomorphism

It is easy to see that the terms of the type system F1 are the proofs of the intu-
itionistic minimal logic, and the types of the expressions are the formulas proved.
One can find more connections between these two systems. These correspondences
are called the Curry–Howard isomorphism.

intuitionistic minimal logic type system F1

propositional variable type variable
→ logical connective → type constructor
formula (proposition) type
assumption variable
implication introduction abstraction
implication elimination application
proof, construction expression

An interesting consequence of the isomorphism above is that the provability of a
formula A is equivalent to the inhabitation of type A. It means that if a formula A
has a proof, then there is an expression which has type A. Similarly, proof checking
is equivalent to type checking, i.e. if P is a proof of the formula A, then P is a
derivation showing that a term has the given type A.

intuitionistic minimal logic type system F1

provability inhabilitation
proof checking type checking

We state the next theorem without proof.

Theorem 3.1. There is a closed λ-expression of type A iff A is a provable formula
of intuitionistic minimal logic.

The Curry–Howard isomorphism is summarized by the slogan formulas as types
and proofs as terms.

It is worth to mention that there is a correspondence between the typed combi-
natory logic and the Hilbert-style proof system, between the type system extended
by dependent types and the first order intuitionistic logic, and also between the
type system F2 and the second-order logic. In general, to each of the systems of
Barendregt’s cube there belongs an appropriate logic.

4. Program verification

In the previous sections we studied some connections between type systems and
logic. Now we turn our attention to the connections between logic and program
verification.

126 6 th International Conference on Applied Informatics

The proof that a program satisfies its specification is called program verification.
Various approaches of program verification have been proposed. One of them is the
operational reasoning, it is an analysis in terms of execution sequences of the given
program. A different approach is called axiomatic reasoning : using this method we
need a language to specify the program properties. The language is the language of
predicate logic, consisting of well-formed formulas. Axioms and derivation (proof)
rules of the logic allow us to prove that the program satisfies the desired properties.

Nowadays automatic program verification is subject to intense research. If
a program operates only on finite data types, that is, on a finite state space,
then automatic program verification is indeed possible. The checking whether the
program is a model of its specification is called model checking.

4.1. Formal proof system

In the theory of program verification well-formed formulas are used to write the
properties of a program, and a proof system is needed to show that the program
satisfies these properties.

A proof system over a set Φ of formulas is a finite set of axiom schemes and
proof rules. If ϕ is an axiom then it is considered as a given fact, and with the help
of rules further facts can be deduced from the formulas. A proof of a formula ϕ in
the proof system is a finite sequence

ϕ1 ϕ2 . . . ϕn,

where ϕ1 is an axiom, ϕ = ϕn, and each formula ϕi (1 ≤ i ≤ n) is either an axiom
or it can be obtained by an application of a rule from formulas of the proof system.
In this case ϕ is a theorem, and we write ` ϕ.

Formulas from predicate logic are used to write properties of program execu-
tions. These formulas are called assertions.

Proof theory deals with the correctness formulas, these have the form

{pre} P {post},

where pre and post are assertions and P is a program. The correctness formula
is true in the sense of total correctness, if every computation of P that starts in
the state satisfying pre terminates and its final state satisfies post. In the case of
partial correctness, diverging computations of P are not taken into account, that
is, the above sentence is valid for terminating computations only.

4.2. Finding proofs

Theorem provers are based on type theory. The provers use the strategy of
goal-directed simplification: to find a proof for a goal, we first find a proof for
simpler subgoals, and then we apply an inference rule to proofs of the subgoals
that yields to a proof of the original goal.

Z. Csörnyei: Type Systems and Program Verification 127

Such a strategy is encoded formally by a tactic, a function that maps a goal to
a pair containing a list of subgoals and a validation. A validation maps proofs of
the subgoals to a proof of the original goal.

The type of tactics is

type tactic = goal → (goal list× (proof list → proof)),

that is, a tactic returns a list of subgoals and a validation that maps proofs of the
subgoals to a proof of the goal. This means that if a tactic is applied to goal g and
it returns ([], f), then f [] is a proof of g.

The basic tools in proof systems for automatically applying rules are tactics. A
tactic examines the given goal situation and reduces it to the problem of solving a
number of subgoals, and applies rules of inference forwards or backwards to derive
new proof formulas or to justify certain formulas of the proof. The main use of
tactics is to translate a proof into a natural deduction.

But the provers usually use goal-directed “interactive” methods, in the inference
steps the user specifies steps and the details are proved automatically. Using tactics
the user can compose so-called theorem proving primitives that can be inference
rules or calls to decision procedures. For example, PVS has many primitives and
a tiny tactic language, while the Isabelle/HOL system has a full programming
language (ML) as a tactic language to compose more sophisticated primitives.

If we need to be able to combine primitive tactics via alternation, composition
or repetition, we create combinators, which are known as tacticals. For example,
some fundamental tacticals:

T1 then T2 applies T1 and then applies T2,
T1 orelse T2 tries to apply T1 and, if it fails, applies T2,
repeat T1 repeatedly applies T1 until it fails.

5. Conclusion

Many widely-used provers are based on some kind of type theory. It was demon-
strated that

• types are useful for organizing formal knowledge,

• the type of an object conveys useful information to reasoners,

• the Curry–Howard isomorphism gives a simple method to synthetize pro-
grams from proofs.

Unfortunately, formal correctness proofs are rather sophisticated and time con-
suming. Proving simple things are quite easy, but as soon as theorems get more
complex, the complexity of the proofs increases rapidly. Of course training and
routine can help to shorten the time required.

One of the advantages of formal proofs is that we get a deep insight into the
programs. Sometimes this leads to a better understanding of the algorithms used
and to improvements and simplifications of its code and documentation.

128 6 th International Conference on Applied Informatics

References
[1] Apt, K.R., Olderog, E-R.: Verification of Sequential and Concurrent Programs,

Springer-Verlag, 1997.
[2] Csörnyei, Z.: Type Systems, Lecture Notes (2003), http://people.inf.elte.hu/csz (In

Hungarian)
[3] Dunfield, J., Pfenning, F.: Tridirectional Typechecking, in POPL’04, January 14-16,

2004, Venice, Italy
[4] Harper, R., Pfenning, F.: Type Refinements, Project Description, 2001.

http://www-2.cs.cmu.edu/1triple/triple.pdf
[5] Pierce, B.C.: Types and Programming Languages, The MIT Press, 2002.
[6] Schwartzbach, M.I.: Polymorphic Type Inference BRICS Lecture Series, LS-95-3

(1995)
[7] Sørensen, M.H.B., Urzyczyn, P.: Lectures on Curry-Howard Isomorphism, Lecture

Notes, University of Copenhagen, University of Warsaw (1999).

Postal address
Zoltán Csörnyei
Department of Programming Languages
and Compilers
Eötvös Loránd University
Pázmány Péter sétány 1/c
H-1117 Budapest
Hungary

