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Abstract

Recently a new one-way function with collision resistance and avalanche
effect has been proposed by A. Bérczes, J. Ködmön, and A. Pethő in [2],
whose security is based on the difficulty of solving a norm form equations.
As an application to this function, they also have proposed a construction
of a one-way hash function. In this paper we will present this hash function
in more details, and show how to construct and use it in the practice using
Maple programs.
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1. One-way hash functions

Hash functions are used in many contexts, and they are also fundamental to
cryptography. There is an extensive literature on the hash functions and their
applications, e.g. [7], [8], [10], and [3].

Definition 1.1. A hash function is a function h which has, as a minimum, the
following two properties

1) compression h maps an input x of arbitrary finite bitlength (called a preim-
age) to an output of fixed bitlength (called a hash value or simply hash);

2) ease of computation given h and an input x, it is easy to compute h(x).

Cryptographic hash functions, however, must have some additional properties
that guarantee their security such as preimage resistance, 2nd-preimage resistance,
and collision resistance. A one-way hash function is a hash function which is
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preimage resistant and 2nd-preimage resistant. A collision resistant hash function
is a hash function which is 2nd-preimage resistant and collision resistant.

A function f has a strict avalanche effect when a change in one bit of the input
results in a change of half of the output bits.

A one-way function is function f such that for each input x, it is easy to compute
f(x), but for essentially all outputs y, it is computationally infeasible to find any
input x such that f(x) = y.

For the precise mathematical definitions of the above concepts see [2], [6], and
[7].

Although widely believed that one-way functions exist, but yet there is no
known function which is provably one-way (with no assumptions). These functions
should thus properly be qualified as “conjectured” or “candidate” one-way functions.
Nevertheless, in the one-way function literature they are widely used the term “one-
way function” instead of “conjectured” or “candidate one-way function”, as we also
will do it in the followings.

2. A new hash function based on norm forms

Let P (X) ∈ Z[X] be a fixed monic polynomial of degree n ≥ 3 having no
multiple roots.

Denote by α1, . . . , αn(∈ C) the roots of P , let n ≥ m ≥ 3 be a positive integer,
and put

L(i)(X) =

m∑

j=1

αj−1
i Xj for i = 1, . . . , n.

Define the norm form corresponding to the polynomial P by

NP (X) :=

n∏

i=1

L(i)(X) =

n∏

i=1

(α0
iX1 + α1

iX2 + α2
iX3 + · · ·+ αm−1

i Xm).

NP (X) is a homogeneous polynomial of degree n in the indeterminantesX1, . . . , Xm

with integer coefficients [1].

Remark 2.1. In fact, NP (X) is a generalization of the concept of norm form, and
it is a special decomposable form.

The
NP (x1, . . . , xm) = b

equation is a norm form equation, where (x1, . . . , xm) ∈ Zm and b ∈ Z.
From the cryptographic point of view it is more convenient to work over finite

domains.
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3. Construction of the one-way function NP,s

Let p and q be primes such that q > p > q/2 and s := pq. Suppose that
gcd(m,ϕ(s)) = 1 (where ϕ is the Euler’s ϕ-function). For s ∈ Z let Zs := Z/sZ.

Define the mapping NP,s : Zm
s → Zs in the following way:

NP,s : (x1, ..., xm) 7→ NP (x1, . . . , xm) mod s.

Question: Is NP,s(X) a one-way function?

Answer A) Calculation of values NP,s(x) is “easy”
The best method to compute values of NP,s(X) at point x ∈ Zm uses the matrix

representation of NP,s(X) with modular arithmetic.
In [2] A. Bérczes, J. Ködmön and A. Pethő proved that the computing the

values of the function NP,s(X) is “easy”:

Theorem 3.1. The complexity of the computation of NP,s(x), using the best algo-
rithm is O(n5 log2 s), where the constants in O depends only on P (X).

Answer B) Inverting the function NP,s(x) is “hard”
Several facts emphasize that in general a norm form equation is “hard” to solve:

• There is not known algorithm which solves all norm form equations.

• We conjecture that the Cerlienco-Mignotte-Piras conjecture concerning lin-
ear recurrence sequences implies that the solvability of decomposable form
equations is algorithmically not decidable [4].

• A complexity analysis of N.P. Smart [9] shows that the best known algorithm
for solution of Thue equations is exponential.

However, there are the wide classes of norm form equations which can be solved
using an algorithm of Gaál [5] which combines powerful theorems of Győry with
constructive methods.

So far, there is not actually known any algorithm for determining all solutions
of general norm form equations, i.e. for inverting the function NP,s. This fact is
represented by the following condition:

Definition 3.1. Strong Modular Norm form Assumption(SMNA): For
every polynomial Q and every PPT algorithm A, for all sufficiently large s

P [A(s, b) = (x1, ..., xm) : b = NP,s(x1, ..., xm)] <
1

Q(s)
,

where xi ∈ Zs and the probability is taken over all values xi and the coin tosses of
A.

Based on the Answer A) and Answer B) we can deduce the following theorem:

Theorem 3.2. Under SMNA the function NP,s is a one-way function.



112 6 th International Conference on Applied Informatics

4. The properties of the one-way function NP,s

4.1. NP,s is collision resistant

Denote Pcoll the probability of the collision for the function NP,s:

Pcoll = P [NP,s(x) = NP,s(y) : x 6= y ∈ Zs
m].

A remarkable result which also has been proved in [2] by A. Bérczes, J. Ködmön
and A. Pethő is the following theorem:

Theorem 4.1. The probability of collision Pcoll for the function NP,s satisfies the
inequality

Pcoll <
C

s
,

where the constant C depends only on the polynomial P .
The function NP,s(x) is collision resistant of level 1.

4.2. NP,s has strict avalanche effect

We tested that the function NP,s has strict avalanche effect, i.e. whenever
one input bit of NP,s is changed, half of output bits must change in average.

5. How to choose P (X) such that the associated
norm form could be easily calculated?

Let P (X) := Xn−1 with n ≥ m ≥ 3. Denote ζ1, ζ2, . . . , ζn(∈ C) the n different
roots of P (X), where ζ1, ζ2, . . . , ζn are the nth roots of unity.

If n > m then let (X1, X2, . . . , Xn) = (X1, X2, . . . , Xm, 0, . . . , 0︸ ︷︷ ︸
m−n

). Then

NP (X) =

n∏

i=1

L(i)(X) =

n∏

i=1

(X1 + ζiX2 + · · ·+ ζn−1
i Xn).

NP (X) is the determinant of the following matrix which has a particular simple
form, and called cyclic matrix [11]:




X1 X2 . . . Xn

Xn X1 . . . Xn−1

. . . . . . . . . . . .
X2 X3 . . . X1


 .

So, we can define the function NP,s as follows:
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NP,s : Zn
s → Zs, (x1, ..., xn) 7→

∣∣∣∣∣∣∣∣

x1 x2 . . . xn

xn x1 . . . xn−1

. . . . . . . . . . . .
x2 x3 . . . x1

∣∣∣∣∣∣∣∣
mod s

We propose to apply NP,s(X) as a one-way hash function.

6. The main steps of constructing our hash function

In the practice modular hash functions map messages to 1024 bit words. Hence
s = pq should be about of this size.

1. System setup and constant definitions Choose

• n with conditions n ≥ 3;

• m with n ≥ m ≥ 3;

• the module s := pq of bitlength 1024, p and q secret primes.
First choose the prime q of size 2512 and then the prime p with conditions
q > p > q/2 and gcd(m, (p− 1)(q − 1)) = 1.
Fix the module s := pq and destroy the primes p and q.

2. Blocking Split the message M into subwords x1, . . . , xk such that each xi,
i = 1, . . . , k represent an integer in the interval [1, s− 1].

3. Padding Extend the function NP,s(X) in the following way:

h(x1, . . . , xn) := NP,s(x1, . . . , xn)

and we define recursively:

• Case 1: there is exists t ≥ 0 ∈ Z that k = n+ t(n− 1). Then

h(x1, . . . , xn+l(n−1)) :=

NP,s(h(x1, . . . , xn+(l−1)(n−1)), xn+(l−1)(n−1)+1, . . . , xn+l(n−1)),

where l = 1, . . . , t.

• Case 2: if k is not of the form n+ t(n− 1) with some suitable t ≥ 0 ∈ Z
then we can extend M with words representing 0 until k has the required
form.

4. Calculation Calculate the hash value h(x1, . . . , xk) ∈ Z.
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6.1. Calculating the hash value NP,s(x)

Let n = 4 > m = 3 ≥ 3, k = 3, and P (X) = X4− 1 be a polynomial due to our
proposal, i.e

NP (X) =

4∏

i=1

L(i)(X) =

∣∣∣∣∣∣∣∣

X1 X2 X3 0
0 X1 X2 X3

X3 0 X1 X2

X2 X3 0 X1

∣∣∣∣∣∣∣∣
.

Let
q := 26815615859885194199148049996411692254958731

6411847867554471228874435280601470939536037485963
3380685538006371637297210170750776562389313989286
7298012168351

p := 13407807929942597099574024998205846127479365
8205923933777235614437217640300735469768018742981
6690342769003185818648605085375388281194656994643
3649006084241

and
s := 35953862697246318154586103815780494672359539

57884613145468601623154653516110019262654169546448
15072042240227759742786715317579537628833244985694
86127895426886129633107582867928982863362740342647
41596118887966094167645324367344287855404102626415
31413965733845673498328716727827370341996619576661
367652180056591

Bitlength of s : 1024 bit (number of decimally digits: 309).
gcd(3, (p− 1)(q − 1)) = 1
M := ICAI2004EgerHungaryJanuaryfrom27to31

6thInternationalConferenceonAppliedInformatics
TheUniversityofDebrecenandtheEszterhazyKaroly
CollegeCallforpapersandparticipationTheConferen
ceisorientedtowardstrictlyprofessionalexchangeofi
deasinthefieldofAppliedInformaticsThescopeofthe
Conferenceistoprovideaforumforthediscussionof
academicresearchesWearesurethattheplaceofthe
conferencehasbeenchosen

x1 := 1252514080749714366361233983481480454991105402
8788777812142816141418655991436047101941498259291594
0865977240408968083569394554706435563713532260708118
4665292105143179642455126546203197734671645691539775
98651196245520890116718228700722728934313550792494307
078660919687

x2 := 38225057522157545914600713246179523299115372222
27265819850839610241464844399021378133261054824643971
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43520257610964102587444126574837411855720844879053952
26950721561958717940729506543260692839193019954850582
02756653528119139580625084920725033577509779935304723
70960720114

x3 := 3200147191638572971454340993189649899093594552
6363240345588654797973189842674427108547818302003555
1927740481976311056740292914822858637187013472664665
1321267815826295631954778784723082795407539466409143
1155100073246765730638656685358882267419438384505431
645936672051

The corresponding bitlengths: 3056 (128+128+126 byte) of M ; 887 (128 byte)
ofx1; 896 (128 byte) of x2; 882 (126 byte) of x3.

These bitlengths will be shorter by concatenation: 128 byte ≤ 1024 bit.
The hash value of M :

h(M) = NP,s(x1, x2, x3) =

∣∣∣∣∣∣∣∣

x1 x2 x3 0
0 x1 x2 x3

x3 0 x1 x2

x2 x3 0 x1

∣∣∣∣∣∣∣∣
mod s =

= 780757540922665452223440
7422088135775187522068990578308011540541684861707
3515703550854754802237683462926620689770526016603
9889557736236199059767784494126877312773847832172
8455792913992065821127110634471323798319340983789
3968240233366315697819612455745921870066939242306
750692501312294368509118232924590925851

Bitlength of h(M) : 1023 bit. Number of decimally digits of h(M): 308.
Let M1 := HCAI2004EgerHungary... (one bit changed)
Relative Hamming-distance: %(h(M),h(M1))

l(M) = 0.4926686217

6.2. Passphrase-checking

n := 4, m := 3, s := pq (s stored and primes p, q destroyed), bitlength of s is
1024; fix cyclic matrix with entries X1, X2, X3, 0.

Login Name Hash Value Salt
Alice h(PPH1) ST1

Bob h(PPH2) ST2

. . . . . . . . .
STi := RSi,1 +RSi,2, where RSi,j random string with length 64 byte.
PPHi := PPHi,1 + PPHi,2 is passphrase of users (minimum 2 x 10 byte)
h(PPHi) := NP,s(PPHi,1 +RSi,1, PPHi,2 +RSi,2, STi)

Here length of x1, x2 are at least 74 byte and x3 is 128 byte.
The system accepts of Alice’s passphrase if h(PPHA) = h(PPH1), where

PPHA is Alice’s present passphrase and h(PPH1) is Alice’s stored hash value.
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6.3. Passphrase-checking (concrete calculation)

Passphrase (without space):
PPH := Thisone− wayfunctionseemssecurebeca

useithasstrictavalancheeffect (length 32 byte)
Salt (random string with length 128 byte)

ST:=M\\k\\C[oFsY]mUFdDtCi[irDLZpPmkBRudgOVO
QFtcc‘‘ulaOaqZIo^T^muqvRLYHsOwYdm_nSUSuAgRH
\\[kumHhSpvRF^PgEtwQWEsoSrntUuaxPVvSV_NwuC]
t_iDefH

h(PPH) = 87784731131987101605117356608421805
37831916616696065189686983044576617751152217274
75991156745758734372389268385949029056430476502
15839471521330280039184034790013361517341642781
43156400044775696914781200053245205163438708060
36711010951995519659955155583830038366487222497
09294824469772766138668988456262094619

Let PPH1 := Uhisone− wayfunction... (one bit changed)
Relative Hamming-distance: %(h(PPH),h(PPH1))

l(PPH) = 0.4946236559

This construction seems secure because the one-way hash function NP,s(X) has
strict avalanche effect i.e. if whenever one input bit is changed, every output
bit must change with probability 1/2.
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