
PFW as generator

László Menyhárt, Gáborné dr. Pap

Department of Media & Educational Informatics
Eötvös Loránd University, Budapest, Hungary

menyhart@inf.elte.hu
papne@inf.elte.hu

Abstract

Some months ago we presented on another conference the PFW: Pro-
gramming Fundamentals Wizard, which is the improved version of helper
tool for the subject Programming fundamentals. Our web-based application
gives place to collect the information from the tasks and it contains an editor
for Nassi-Shneiderman diagram. This guide helps the students to keep the
expected order of problem solving namely at first thinking and secondly cod-
ing or even collecting the information, creating algorithm independently from
program languages then creating source code. Unfortunately deep testing is
not specific and documentation is required only as homework based on an
example.

This time we present two new functions of PFW. One of the new functions
is good to generate the first, raw version of the documentation which must be
edited even. Second function generates C++-like source code. We would like
to emphasize that the primary aim of this application is not the generation,
it was not developed because of this but this beta version of C++-like source
code helps intensively the beginner programmers in the implementation and
understanding the code. Generating a compilable and runnable source code
is possible with using program-language-specific expressions in the Nassi-
Shneiderman diagram.

Keywords: teaching programming, code generation, documentation

MSC: 97B40, 97R99, 97Q60

1. Introduction

Computer science is a young and a diverse science. That is why education of
computer science is very difficult. It is very important to clarify that who will learn
it and on which level, because it defines the area and the depth. In this article
we present some possibilities of a guide application (PFW) to the Programming
Fundamentals course at University. There are more methods to teach programming

Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, January 29–February 1, 2014. Vol. 2. pp. 9–16

doi: 10.14794/ICAI.9.2014.2.9

9



[1]. We use methodological and algorithm oriented programming on the foundation
courses of students of informatics. This method takes in the whole process of
implementation from creating specification to writing documentation. In an earlier
paper we presented an own developed application, PFW, which helps the students
in this systematic learning. We presented the PFW application and the method
how it changes up the process of creating algorithm, helps the implementation and
how it can be used in education. In this article we present two new functions of
PFW. User is able to generate source code and documentation with these.

2. Short story of PFW

PFW is a guide on web platform. It helps to the students analyzing and thinking
over their task in our programming courses. Data the tasks and their correlation
can be collected on these pages so students are guided through the specification.

They can edit on a webpage the image representation of Nassi-Shneiderman
diagram of the algorithm with mouse clicking. They can store the test cases and
test results on this platform.

3. Implementation

This own developed, web-based application [14] was implemented in Java and it
runs on our server. User must login for using it. Three possible ways are the
Gmail identifier, user id in INF.ELTE domain or after a registration in the system
with unique user identifier and password. Every user has an own workspace in the
database where tasks are stored. The storage format is XML [6] from which the
information on the screen and codes are generated.

3.1. Surface of the application

Figure 1 shows the initial screen of the application which contains introduction,
link to the registration and login.

The first menu has menu items for opening a task or creating a new task. Figure
2 shows the first page after the successful login.

The menu will be changed when the user open or create a task. The new menu
supports the saving and closing of task and it’s solving steps. Figure 3 shows the
main page.

Figure 4 shows the pages on which the user creates the specification.
User fabricates the algorithm in NSD format using a graphical view of it. Figure

5 shows the floating menu of editing the NSD.
After these steps user can fill out the data on the testing and the possible future

improvements pages.

10 L. Menyhárt, G. Pap



Figure 1: Initial screen of PFW

Figure 2: After the successful login

3.2. Functions of generation

The user performed the design part of solving the task a la the previous paragraph.
This is the most important step. After this the coding and creating the documen-

PFW as generator 11



Figure 3: Example task

tation demand less thinking. Several parts of these can be mechanically produced.
PFW’s new functions grab these parts and help the user with generation. They
have not to double work so they save time. It is not our intention to offer correct
source code and documentation. Students must correct and update both stuffs.

3.2.1. Generation of source code

Generation of C++ source code starts with a click on a button (See Figure 6) on
the page General.

A compressed file is downloaded which contains a Code::Blocks project. In
good case generation is required only one times. If the algorithm was modified,
the new generation has a unique name as a version. Three files are in the project
because the source code is taken apart to the main part and generated functions
of subtasks. Main part contains the input and output handling, so the user must
perform more work on this. NSD is very flexible and the boxes can contain anything
because it is for human and not for the computer. But using the symbol system
learned on the course is useful because the initiative C++ code is generated from
this. The algorithm does not contain the reading input, writing output and other
language specific items. For example operators must be rewrite in the source code.
It is mechanical work, but sometimes it is difficult for the students. For instance

12 L. Menyhárt, G. Pap



Figure 4: Editing the specification

Figure 5: Floating menu at NSD editing

PFW as generator 13



Figure 6: Button for generating source code

the indexes of arrays need a bit thinking because C-like languages’ points to the
beginning of an item, so brackets must contain one less value (0 instead of 1).

The generator produces a function to every subtask. The parameters of the
function, with its name and type, are generated from the specification. That is
why the specifications of subtasks are very important. The function body will be
generated from the NSD diagram. User must translate this faulty source to the
correct C++ specific expressions.

Figure 7: Generated source code

Figure 7 shows the generated C++ source code. We marked with red color the
places where user must modify it for getting a runnable code with correct syntax.

3.2.2. Generation of documentation

Generation of documentation starts with a click on a button (see. Figure 8) on the
page General.

Figure 8: Button for generating documentation

This document is based on an example with the same content and structure.
The content is filled with every known data which are stored in the PFW. The
expected but unknown places contain red colored “Update it!” expression where
students must edit it. For instance users must paste the screenshots into the user
manual and diagram of project structure must be copied into the development
documentation.

3.3. Technology

The basic idea of the generation is XSLT. The XML Stylesheet Language defines
the output of the transformation from the XML. Fortunately PFW stores the data
in XML format. C++ source code is text which can be generated from XML

14 L. Menyhárt, G. Pap



Figure 9: Generated documentation

with XSLT. We used HTML output for the document but the extension and the
mimetype is set to signify to the Microsoft Windows system that the content is for
Microsoft Word. MS Word opens the file correctly after this trick.

4. Conclusion

We presented two new functions in our web-based application. These generations
are good for students and teachers, too. They can save time with these and the
students can study the connection between the specification and data structure of
the application and between the algorithm and source code.

References

[1] SZLÁVI, P., ZSAKÓ, L., Methods of Teaching Programming, Teaching Mathematics
and Computer Science Vol. 1/2, (2003), 247–257

[2] NASSI, I., SHNEIDERMAN, B., Flowchart techniques for structured programming,
ACM SIGPLAN Notices Vol. 8 Issue 8, (1973), 12-–26

[3] DIJKSTRA, E.W., A Discipline of Programming, Prentice-Hall, (1973),
[4] SZLÁVI, P., ZSAKÓ, L., Módszeres programozás, Programozási bevezető, 18.

Mikrológia, (1996)
[5] CSEPREGI, Sz., DEZSŐ, A., GREGORICS, T., SIKE, S., Automatic Implemen-

tation of Service Required by Components, Workshop on Property Verification for
Software Components and Services, (2007), http://lina.atlanstic.net/provecs/
2007/provecs2007proceedings.pdf

[6] MENYHÁRT, L., Can a language be before “the first programming language”?,
Teaching Mathematics and Computer Science Volume IX, Issue II, (2011), 209-224,
ISSN: 1589-7389, http://tmcs.math.klte.hu/Contents/2011-Vol-IX-Issue-II.
html

PFW as generator 15



[7] MENYHÁRT, L., PAP, G.né, Dokumentáció alapú programfejlesztés, INFODIDACT
2012 conference, Zamárdi, Hungary (2012)

[8] MENYHÁRT, L., PAP, G.né, How can we get our students to think while we help
their work too?: Document based development, Proceedings of the 7th International
Multi-Conference on Society, Cybernetics and Informatics. (2013) pp. 97–102.

[9] MENYHÁRT, L., PA,P G.né, A programozási alapismeretek oktatását támogató
eszköz továbbfejlesztett változatának bemutatása, INFODIDACT 2013 conference,
Zamárdi, Hungary, (2013)

[10] SHNEIDERMAN, B., A short history of structured flowcharts (Nassi-Shneiderman
Diagrams), University Maryland, http://www.cs.umd.edu/hcil/members/
bshneiderman/nsd/ (2003)

[11] FISCH, B., Structorizer, http://structorizer.fisch.lu/, (2009-2013)

[12] MOLNÁR, T., StukiMania, http://stukimania.hu, (2012-2014)

[13] MENYHÁRT, L., Short description of Programming Fundamentals Wizard, URL:
http://xml.inf.elte.hu/2013_14_1/progalap/anyagok/PFW_leiras.pdf, (2013)

[14] MENYHÁRT, L., Programming Fundamentals Wizard, URL: https://157.181.
166.134:8181/PFW/index2_HU.jsp, (2013)

16 L. Menyhárt, G. Pap


