
Quo vadis, self-* software?∗

Veronika Szabóová, Csaba Szabó

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice
Veronika.Szaboova@tuke.sk, Csaba.Szabo@tuke.sk

Abstract
The research on self-* software began with Laddaga’s DARPA report

[1]: “Self-adaptive software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing what the software
is intended to do.” As time went, there was significant growth in the field
of self-adaptive systems, many self-* properties were defined to allow better
focused research. Guinea presented in [2] in 2013 a very important process
characteristics as well: “Its life-cycle cannot be stopped after its development
and initial setup.” Which means that the challenge of self-* systems is to
“live and change.” Changes alter the software itself but could reconfigure
its operating environment as well. Or implement the adaption using both
ways. We focus on internal changes. Regarding to these self-modifications,
Salehie and Tahvildari wrote in [3]: “there is still a lack of powerful languages
and frameworks that could help realize adaptation processes.” Our goal is
to address this problem in this article. We focus on implementation of self-
modification and related issues of self-testing of the changes introduced.

Keywords: self-adaptive, self-testing, self-* properties

MSC: 68N30; 68N20

1. Introduction

The idea of self-adaptive systems is very old. We can find it in early science-
fiction novels of Isaac Asimov or in Frank Herbert’s Dune as well, where a rule-
based system controlled the system behavior and allowed adaption to changing
situations. “Thinking machines” and “robots” characterize the years 1939-72, but
the idea continues until today.

∗This work was supported by the Cultural and Educational Grant Agency of the Slovak Re-
public, Project No. 050TUKE-4/2013: “Integration of Software Quality Processes in Software
Engineering Curricula for Informatics Master Study Programme at Technical Universities – Pro-
posal of the Structure and Realization of Selected Software Engineering Courses.”

Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, January 29–February 1, 2014. Vol. 2. pp. 317–325

doi: 10.14794/ICAI.9.2014.2.317

317



Software and hardware implementations needed to wait for required technolo-
gies. In them, there could be easily found the influence of science-fiction novels or
their authors, respectively.

Self-* systems first occurred in the second half of 1990’s. Several companies such
as IBM, Sun, HP and Microsoft started the research – at the beginning, the focused
on military applications, later network and operating system oriented solutions ap-
peared. For commonly used software, the technology needs improvement. Actually,
each implementation is architecture dependent mostly having a distributed archi-
tecture. Distributed architecture is similar to network architectures, which allows
the adoption of several computer network and hardware related algorithms. These
algorithms deal with a subset of self-* properties, mainly related to robustness or
self-configuration.

We think that besides existing (mostly Java-based) implementations, there is
an interpreted language as alternative in self-* systems development. Creation of a
framework for interpreted self-healing (FISH) seems to be possible using interpreted
or scripting languages. We focus our paper on this innovative idea. Our goal is to
present background and history, which we think directly lead to FISH.

2. Background

Before Laddaga’s DARPA report [1], there is a long evolution of software architec-
tures and viewpoints between small programs and self-healing software systems.

2.1. Development of software architecture

Parnas [4] started software architecture research as the evolving separate discipline
of software engineering with defining the term modular decomposition of software
systems.

Later, Shaw expressed in [5] the need of higher level of abstraction than the one
provided by modular decomposition.

The term software architecture was first used by Perry and Wolf in [6], their
most referred article presenting fundamentals is [7]. Since these publications, soft-
ware architecture becomes a well known phrase, later a standalone discipline of
software engineering.

2.2. Software architectural views

The viewpoint on software architecture also changed and developed in time. While
Parnas [4] identified three structures for modules, usage and processes, Perry and
Wolf [7] talk about views:

• data,

• computation,

318 V. Szabóová, Cs. Szabó



• connectors.

The above views started a new thinking about software, many development
methods and strategies rely on them. The first significant improvement was de-
veloped by Kruchten [8] when he described the 4+1 architectural views approach,
which uses the following views:

• logical,

• development,

• process,

• physical,

• scenarios.

Rozanski and Woods extended in [9] Kruchten’s approach by new views and
a new dimension called perspectives. Views and perspectives separate and collect
selected aspects of software. We state that this approach is the key to self-* system
design and implementation.

2.3. Software architecture for self-adaptive systems

Specific software architectures for self-* systems exist too. At the beginning, mostly
existing architectures were modified to achieve a subset of self-* properties. Gor-
lick [10], Taylor [11] and Magee [12] worked with component-based and distributed
systems.

Oreizy et al. [13] were the first addressing the architecture of a self-adaptive
software as a different and new architecture. Kramer and Magee in [14] presented
the architectural challenge on self-managing systems. Latest paper to mention,
there is a definition of architectural style for distributed architectures for component
coordination in the work of Baresi et al. [15], where self-organizing group topologies
are discussed. The presented level of self-adaptiveness is very high, because groups
can change their leads autonomously by voting, which is a new approach to rule
management in such systems.

2.4. Categories of self-systems

Miller presents the categories of self-* systems in [16] using the self-CHOP (con-
figure, heal, optimize, and protect) abbreviation, the shortest explanation of the
topic is possible by Fig. 1.

At the lowest implementation level, one could consider self-adaptation in a
switch or if-then statement already. Higher levels are represented by exception
handling. The actual top level includes autonomic resource management and au-
tomatic updates. All that is mainly implemented using compiled languages. This
also implies two significant limitations. The first limitation is that there is a lack of

Quo vadis, self-* software? 319



Figure 1: Self-* system classification [16]

self-modification of components; only the whole component can be replaced in the
best situation. Second limitation is that the mechanisms require an extra rule base
and rule inference to determine the action; this action planning is using developer-
defined symptoms instead of deriving the symptoms from the architecture and
requirements automatically, which strongly limits self-adaptiveness.

All of the system categories presented above require a very flexible manage-
ment. There are overlapping parts of implementation too. We see that adaptation
management is the most critical problem in autonomous computing. I.e. everyone
would like to use a system adopting to her/his changing requirements, but no one
wants to fight a self-willing software.

3. Motivation

Our motivation is to create a self-healing system architecture, which is a real self-
adaptive system – not a self-willing one. The architecture will be then evaluated
in numerous case studies and will undergo a theoretical proving mechanism. All
these goals are actually distant.

In this article, we aim to get closer to a solution from a different angle. This
point of view is technology.

Why? Because Salehie and Tahvildari wrote in [3]:

There is still a lack of powerful languages and frameworks that could
help realize adaptation processes.

We show in this article that there is a language with the power to be used
here. A language with possibility of runtime changes of the implementation source
codes. The changes are also evaluated before they got introduced. The most
significant limitation is that the language is not used in every application domain
and therefore, there is a lack of support of several application domains.

320 V. Szabóová, Cs. Szabó



4. Perl in self-* systems

When selecting a language for self-adaptive systems, one needs to consider support
for several implementation-related attributes:

• lazy execution, which allows fast reaction to changed environment,

• managed, which means that a garbage collector or equivalent is always per-
forming a controlling mechanism over the system,

• interpreted, because interpreted modules can be changed during execution of
other modules, which makes the change implementation faster (no compila-
tion is needed, which fastens evaluation as well)

• interactive, which property is needed for explicit management (system ad-
ministration) and also supports module updates.

These properties need to be included with the language – mostly as native lan-
guage constructs or libraries, because the general self-healing process implements
the following:

• changing the code,

• compiling the new version,

• checking or testing the new version for the production environment,

• introducing or deploying the new version, which also means removing the old
one.

Perl allows explicit lazy evaluation of statements. Dynamic processing of user
inputs is significantly different to this approach, because the eval function allows
delaying or denial of execution that is impossible when dynamically processing user
inputs, which run in a so-called interactive mode. Lazy evaluation in Perl language
is frequently used. There are two alternatives [17]:

eval EXPR In the first form, the return value of EXPR is parsed and executed as if
it were a little Perl program. The value of the expression is first being parsed,
and if there were no errors, executed in the lexical context of the current Perl
program, so that any variable settings or subroutine and format definitions
remain afterwards. The value is parsed every time the eval executes. This
form is used to delay parsing and execution of EXPR until run time, that could
be considered as the lazy property.

eval BLOCK In the second form, the code within the BLOCK is parsed only once
– at the same time the code surrounding the eval itself was parsed – and
executed within the context of the current Perl program. This form is typ-
ically used to trap exceptions more efficiently than the first one, while also
providing the benefit of checking the code within BLOCK at compile time.

Quo vadis, self-* software? 321



In both forms, the return value is the value of the last expression evaluated
inside the mini-program. If there is a syntax error or run-time error, or a die
statement is executed, eval returns undef, and $@ is set to the error message. If
there was no error, $@ is guaranteed to be the empty string.

With an eval, there exist four cases to remember what is being looked at when:

1 eval $x; # CASE 1
2 eval "$x"; # CASE 2
3 eval ’$x’; # CASE 3
4 eval { $x }; # CASE 4

Cases 1 and 2 above behave identically: they run the code contained in the
variable $x.

Cases 3 and 4 likewise behave in the same way: they run the code ’$x’, which
does nothing but return the value of $x. (Case 4 is preferred for visual reasons,
but it also has the advantage of compiling at compile-time instead of at run-time).

In the field of self-* systems, both alternatives of usage of the eval func-
tion could find their place – all four cases presented above. The second pair for
exception-handling while the first one for lazy evaluation of self-healed code or its
parts, respectively.

5. Examples

The property of introducing new class members on-demand is used to introduce
the attribute rotx for rotation angle. In the next listing, if the attribute already
exists, its value is incremented. The construct triggers both cases of non-existance,
which is a kind of basic self-healing strategy. Self-modification part is located in
lines 1-2.

1 unless ( defined $v -> {’rotx’} ) {
2 $v -> {’rotx’} = 0;
3 }
4 else {
5 $v -> {’rotx’} ++;
6 }

The second example is a typical self-modifying routine. The EDIT ME tag is
used to identify change location. In that place, a new code is being placed until
the stop condition is met.

1 #!/usr/bin/perl
2 use strict;
3 use warnings;
4
5 my $Gen = 1024; #EDIT ME
6 print $Gen . "\n";
7

322 V. Szabóová, Cs. Szabó



8 &modify_code;
9 exec(’perl’, $0) if $Gen < 500;
10
11 sub modify_code {
12 local $/;
13 local *CODE;
14 open CODE , "+<$0" or die "Can’t␣open␣for␣r/w:␣$!";
15 $_ = <CODE >;
16
17 my ($ext) = /\$Gen = (\d+);\s+\#EDIT ME/;
18 $ext *=2;
19 s/\$Gen = \d+;\s+\#EDIT ME/\$Gen = $ext; \#EDIT ME

/;
20
21 seek CODE , 0, 0;
22 truncate CODE , 0;
23 print CODE;
24 }

Our third example of self-adaptive Barycentric interpolation [18] demonstrates
the power and weakness of self-modification in one. Self-modification could be
distributed into selected lines of code (here line 3 and 7-10). Identification of
change locations is getting difficult due to the need of different tags. This kind of
annotated code would be very hard to maintain.

1 sub l($) {
2 my ($x) = @_;
3 my $l_string = "1*($x -0)*($x -10)*($x -20)*($x -30)"; #

EDIT LSTRING
4 return eval $l_string;
5 }
6
7 my $diff = 1; #EDIT DIFF
8 my $Gen = 40; #EDIT ME
9 my %points = ( ’0’ => ’0’, ’10’ => ’100’, ’20’ => ’400’, ’

30’ => ’900’,); #EDIT POINTS
10 my @weigths = [-0.1, 0.1, 0]; #EDIT WEIGTHS
11 ...
12 &modify_code if $diff;
13 exec(’perl’, $0) if $Gen < 10;
14
15 sub modify_code () {
16 ...
17 }
18
19 sub barycentric ($) {
20 ...
21 }

Quo vadis, self-* software? 323



6. Conclusion

We focused this paper on the possibilities of self-modification and self-healing im-
plementation using interpreted languages. We selected Perl to demonstrate that
this language provides the required constructs and mechanisms to implement a
self-modifying system. This system would become a self-healing by a proper def-
inition of self-modification goals. Lower levels of related self-* properties such as
exception handling or branching are also present in Perl, but these properties are
included in compiled languages as well. The real power is in the ability of flexible
self-modification, which makes Perl a perspective candidate for FISH implementa-
tion.

FISH, the framework for interpreted self-healing, could utilize Perl::Inline, XS
and other modules to include existing systems implemented in different program-
ming languages. Especially the latter will be the main aim of our future research.

References

[1] Laddaga, R., Self Adaptive Software SOL BAA 98-12, DARPA/ITO (1998).

[2] Guinea, S., Software Architecture for Adaptive Systems, Self-Adaptive Software
Systems PhD Course with Carlo Ghezzi at Politecnico di Milano (2013).

[3] Salehie, M., Tahvildari, L., Self-Adaptive Software: Landscape and Research
Challenges, ACM Trans. Autonom. Adapt. Syst. Vol. 4 No. 2 Article 14 (2009), 42 p.

[4] Parnas, D. L., On the criteria to be used in decomposing systems into modules
(1971). Computer Science Department. Paper 1980. http://repository.cmu.edu/
compsci/1980

[5] Shaw, M., Abstraction techniques in modern programming languages, IEEE Soft-
ware, Vol. 1, No. 4, p. 10, (1984)

[6] Perry, D. E., Wolf, A. L., Software Architecture. August 1989. The original
paper.

[7] Perry, D. E., Wolf, A. L., Foundations for the Study of Software Architecture,
ACM SIGSOFT Software Engineering Notes, 17:4 (October 1992)

[8] Kruchten, P.B., The 4+1 view model of architecture, IEEE Software, 12 (6),
pp.42–50 (1995)

[9] Rozanski, N., Woods, E., Software Systems Architecture: Working with Stake-
holders Using Viewpoints and Perspectives, Addison-Wesley (2011)

[10] Gorlick, M.M., Razouk, R.R., Using weaves for software construction and anal-
ysis, Software Engineering, Proceedings., 13th International Conference on, pp.23,34,
13-16 May 1991 (1991)

[11] Taylor, R.N., Medvidovic, N., Anderson, K. M., Whitehead Jr., E.J.,
Robbins, J. E., Nies, K. A., Oreizy, P., Dubrow, D.L., A component- and
message-based architectural style for GUI software, Software Engineering, IEEE
Transactions on, vol.22, no.6, pp.390,406, (Jun 1996)

324 V. Szabóová, Cs. Szabó



[12] Magee, J., Dulay, N., Kramer, J., Regis: a constructive development envi-
ronment for distributed programs. Distributed Systems Engineering 1(5): 304-312
(1994)

[13] Oreizy, P., Medvidovic, N., Taylor, R. N., Architecture-Based Runtime Soft-
ware Evolution. Proceedings of the International Conference on Software Engineering
1998 (ICSE’98), pages 177-186, Kyoto, Japan, April 19-25, 1998.

[14] Kramer, J., Magee, J., Self-Managed Systems: an Architectural Challenge. FOSE
2007 : 259-268

[15] Baresi, L., Guinea, S., Saeedi, P., Achieving Self-adaptation through Dynamic
Group Management. Assurances for Self-Adaptive Systems 2013 : 214-239

[16] Miller, B., The autonomic computing edge: Can you CHOP up autonomic com-
puting?, IBM, 2008.

[17] Perl Programming Documentation. [Online]. Available: http://perldoc.perl.org/

[18] Berrut, J.-P., Trefethen, L. N., Barycentric Lagrange Interpolation, SIAM
Review, Vol. 46, No. 3, pp. 501–517 (2004)

Quo vadis, self-* software? 325


