
A closer look at software refactoring using
symbolic execution∗

Csaba Szabó, Maroš Kotul, Richard Petruš

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice
Csaba.Szabo@tuke.sk, Maros.Kotula@student.tuke.sk,

Richard.Petrus@student.tuke.sk

Abstract

Fowler’s classical definition of program refactoring as it appeared in [1] is
many times broken in CASE tools, which claim non-refactorings to be refac-
toring operations. On other hand-side, there are often forgotten refactorings.
According to the original definition [1], “Refactoring is the process of chang-
ing a software in a such way that it does not alter the external behavior of
the code yet improves its internal structure.” Many times, refactoring is done
by hand, which needs a detailed verification. Based on the commutativity
diagram of symbolic execution presented by King in [2] and the above defi-
nition of refactoring, we expressed the principle of program refactoring and
our look at it using symbolic execution. These are presented in this paper
as well as the overall principle of automated refactoring evaluation. For the
question of “is it a refactoring?” we offer an answer using Java PathFinder
and Symbolic PathFinder for the Java programming language.

Keywords: Java, refactoring, symbolic execution

MSC: 68N15; 68N20

1. Introduction

Computer programs are often the subject of inevitable evolution changes. These
changes often bring a certain amount of uncertainty about wheter they were suc-
cessful and thus the program is still valid. In general, as programs become bigger

∗This work was supported by the Cultural and Educational Grant Agency of the Slovak Re-
public, Project No. 050TUKE-4/2013: “Integration of Software Quality Processes in Software
Engineering Curricula for Informatics Master Study Programme at Technical Universities – Pro-
posal of the Structure and Realization of Selected Software Engineering Courses.”

Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, January 29–February 1, 2014. Vol. 2. pp. 309–316

doi: 10.14794/ICAI.9.2014.2.309

309

and more complex, the problems that arise with these changes become more signif-
icant. To deterimine the validity of these changes tests are often performed. These
tests can be manual or automatic. Still despite of these tests there is a fair chance
that errors can persist, as the test cases can contain errors as well or there is simply
a lack of some test cases. With this in mind, we tried to look at the problem from
a slightly different point of view. We use symbolic execution to analyze program
methods. In our setup, we have two programs or methods. These methods contain
the same code, one before the refactoring changes and the other one after these
changes. Due to the basic substance of refactoring process these methods should
behave equally. To analyze this behaviour we use the aforementioned symbolic
execution. We use these analysis to compare the behavior of these methods and
then form a conclusion about the validity of this refactoring. To execute symbolic
execution over a method it is possible to take a manual or an automatic approach.
Logically the latter one comes as the better option. To do this we use a tool called
Java PathFinder [3] and its supplement called Symbolic PathFinder [4].

2. Background

This section presents certain definition, which ones are relevant and necessary to
provide for a complete understanding of our approach. The definitions presented
will be referred in the second half of the paper.

2.1. Category theory
A category is a graph with a rule for composing arrows to give another arrow. This
rule is subject to certain condition. The formal definition as presented in the works
[5, 6, 7, 8] is given below.

Definition 2.1. A category is a collection of objects and morphisms such that for
each pair of objects A,B exists a set of hom(A,B) of morphisms between them
such that:

• for each object X the set hom(X,X) contains the identity morphism,

• for each triple of objects X,Y, Z and pair of morphisms f ∈ hom(X,Y) and
g ∈ hom(Y,Z), there is a composite morphism f ◦ g ∈ hom(X,Z),

• for each pair of objects X,Y and morphism f ∈ hom(X,Y), the identity
morphisms are left and right units for composition: idX ◦ f = f = f ◦ idY ,
and

• for each 4-tuple of objectsX,Y, Z,W and triple of morphisms f ∈ hom(X,Y),
g ∈ hom(Y,Z) and h ∈ hom(Z,W) composition is associative: (f ◦ g) ◦ h =
f ◦ (g ◦ h).

Morphism f ∈ hom(X,Y) is also written f : X → Y .
The category is always based on a graph; therefore it is visual, clear and easy

to understand [9].

310 Cs. Szabó, M. Kotul, R. Petruš

2.2. Symbolic execution
In King’s work [2], we can find the following definition of symbolic execution.

Definition 2.2. Symbolic execution is a natural extension of normal execution,
providing the normal computations as a special case. Operators of the language
are extended to operate on symbolic formulas. E.g. real data could be replaced by
arbitrary symbols in the computations.

Symbolic execution could be used in program testing to identify path condi-
tions, which could be used in test case generation for statement, path or state
coverage testing as stated in King’s work [2]. Others, like Pócza et al. [10] and
Kozsik et al. [11], use symbolic execution in practice over the .NET programming
platform and C/C++ programming languages. The main principle used here is to
substitute a set of symbolic variables into the role of the real variables used in the
program. A simulation of the program run is then executed while following and
recording value changes of each symbolic variable.

Symbolic execution was expressed by King [2] as the commutativity diagram
shown in Fig. 1.

P (X),K E(P (X),K)

P (K) E(P (K))

symbolic execution

communication � substitution

execution

P−(K) P (K) P+(K)evolution

refactoring

evolution

refactoring refactoring

E(P−(K)) E(P (K)) E(P+(K))evolution

refactoring

evolution

refactoring refactoring

P (X),K P (K)

E(P (K)) ≡ E(P ′(K))

P ′(X),K P ′(K)

communication

refactoring

execution

communication

execution

P (X),K E(P (X),K)

P (K) E(P (K)) P ′(K)

E(P ′(X),K) P ′(X),K

symbolic execution

communication

refactoring

� substitution

execution

�

execution

substitution

symbolic execution

communication

1

Figure 1: Commutativity diagram of symbolic execution by
King [2]

2.3. Refactoring
Fowler [1] and Rutar et al. [12] define refactoring as shown below.

Definition 2.3. Refactoring is a process of changing code structure to improve its
structural aspects while preserving its behavior.

Every refactoring produces a small change, a set of these changes can produce
a bigger restructuralization of code. Due to the small changes every refactoring
makes, there is a smaller chance of error introduction. The reasons to introduce
refactoring to a program can be to improve the effectiveness of the code or to make
the code better readable and understandable.

This change can thus bring:

1. better understanding of code

2. easier code modification in the future

A closer look at software refactoring using symbolic execution 311

3. easier enhancement of code

4. better scalability

5. easier code maintenance

6. better readability

3. Refactoring in terms of category theory

To preserve compatibility to King’s commutativity diagram [2] in Fig. 1, we will
use the following notation [13]:

• Program structure will be denoted as P (X), where P is the program and X
represents program interface.

• P (X),K is the program in the environment called K.

• P (K) is the program with environment values passed to its interface.

• E will be used for external behavior notation, which, in fact, can be expressed
in two different ways:

1. E(P (K)) denotes real external behavior,

2. E(P (X)) denotes symbolic external behavior.

By the above notation, we can express the principle of refactoring as presented
in Fig. 2.

P (X),K E(P (X),K)

P (K) E(P (K))

symbolic execution

communication � substitution

execution

P−(K) P (K) P+(K)evolution

refactoring

evolution

refactoring refactoring

E(P−(K)) E(P (K)) E(P+(K))evolution

refactoring

evolution

refactoring refactoring

P (X),K P (K)

E(P (K)) ≡ E(P ′(K))

P ′(X),K P ′(K)

communication

refactoring

execution

communication

execution

P (X),K E(P (X),K)

P (K) E(P (K)) P ′(K)

E(P ′(X),K) P ′(X),K

symbolic execution

communication

refactoring

� substitution

execution

�

execution

substitution

symbolic execution

communication

1

Figure 2: The principle of refactoring

This principle shows that morphism refactoring : P (X) → P (X) changes the
program P to P ′ without a change neither in its interface nor external behavior
(X,K remain unchanged and E(P (K)) = E(P ′(K))).

Now, we can introduce symbolic execution into Fig. 2. It will be based on Fig. 1.
As symbolic execution represents a powerful alternative to real execution, software
refactoring using symbolic execution could be expressed as in Fig. 3.

312 Cs. Szabó, M. Kotul, R. Petruš

P (X),K E(P (X),K)

P (K) E(P (K))

symbolic execution

communication � substitution

execution

P−(K) P (K) P+(K)evolution

refactoring

evolution

refactoring refactoring

E(P−(K)) E(P (K)) E(P+(K))evolution

refactoring

evolution

refactoring refactoring

P (X),K P (K)

E(P (K)) ≡ E(P ′(K))

P ′(X),K P ′(K)

communication

refactoring

execution

communication

execution

P (X),K E(P (X),K)

P (K) E(P (K)) P ′(K)

E(P ′(X),K) P ′(X),K

symbolic execution

communication

refactoring

� substitution

execution

�

execution

substitution

symbolic execution

communication

1

Figure 3: Software refactoring using symbolic execution

4. Implementing refactoring evaluation

Next step of our research is evaluation of practical applicability. As we already
introduced, implementation is done in the Java programming language. More pre-
cisely, it is for the Java programming language. The reason is that we use the
selected PathFinder [3, 4] libraries.

In our approach we use two programs, the original one (P) and the refactored
one(P ′). We put them through symbolic execution into the Symbolic Path?nder
environment. Then, we use the output we get from the execution to analyze possible
behavioral changes. There are two conditions these two programs must meet for
the change to be a refactoring:

1. the output must be the same for both P and P ′ for the same input values
and

2. the number of execution paths must be equal.

Next, we need to create our testware, which in this case implements symbolic
execution and analyzes the above mentioned properties of the pair of programs.
The implementation consists of a single DriverClass, which instantiates two classes
– the original and refactored one. These classes contain the methods to compare.
The Java Symbolic PathFinder setup is included with Fig. 4.

target=example.DriverClass
classpath=${jpf-symbc}/build/examples
sourcepath=${jpf-symbc}/src/examples
symbolic.method=example.ClassOriginal.myMethod(sym#sym)
listener=.symbc.SymbolicListener

Figure 4: Symbolic PathFinder setup for our example

The main principle of comparison is located in only two lines of code in the
DriverClass, see Fig. 5.

A closer look at software refactoring using symbolic execution 313

int a = original.myMethod(1, 2);
int b = refactored.myMethod(original.getX(), original.getY());

Figure 5: The most important lines of code in the DriverClass

For a demonstration we provide the following pieces of code, which contain one
simple method. Fig. 6 shows the original code.

public int myMethod(int x, int y) {
if(x > 0){

return 1;
}else{

if(y > 0){
return 2;

}
else{

return 3;
}

}
}

Figure 6: Example method before refactoring

Code in Fig. 7 contains the same code after a small refactoring consisting of
two reverse conditional changes.

public int myMethod(int x, int y) {
if(x <= 0){

if(y <= 0){
return 3;

}else{
return 2;

}
}else{

return 1;
}

}

Figure 7: Example method after refactoring

As we can see from the output presented in Fig. 8, both methods provided the
same output values for the same input values, thus preserving the same behavior.

314 Cs. Szabó, M. Kotul, R. Petruš

*************Summary***************
PC is:constraint # = 1
x_1_SYMINT[1] > CONST_0
Return is: CONST_1
Method original: output[1]
Method refactored: output[1]
*************Summary***************
PC is:constraint # = 2
y_2_SYMINT[1] > CONST_0 &&
x_1_SYMINT[-1000000] <= CONST_0
Return is: CONST_2
Method original: output[2]
Method refactored: output[2]
*************Summary***************
PC is:constraint # = 2
y_2_SYMINT[-1000000] <= CONST_0 &&
x_1_SYMINT[-1000000] <= CONST_0
Return is: CONST_3
Method original: output[3]
Method refactored: output[3]

Figure 8: Results of refactoring evaluation

5. Conclusion

In this work we aimed to find a relation between symbolic execution and refactor-
ing. We used commutativity diagrams to express this relation. This is the main
contribution of present article.

Theories also need an evaluation. We did this by experimentally using our
approach on test codes. These codes represented one actual program before and
after a refactoring. To actually execute symbolic execution over code we used a
tool called Java PathFinder and Symbolic PathFinder.

Using these tools we could get output form the executions over our pieces of
test code. Then, we used these outputs to analyze the change in behavior between
these two codes. In our experiments, we discovered that the refactorings made no
change in behavior and therefore where valid. It also proved, that our approach is
suitable to give an answer to the question “is the change a refactoring?”.

Even though we got satisfiable results for our test cases, one must consider the
restrictions that come with symbolic execution and Java PathFinder. Not any piece
of code can be executed this way. Because of that our examples where designed
to fit into the capabilities of Java PathFinder. We can still say that based on the
results we achieved, that this approach is suitable. A usage in real development
and in bigger scales is still questionable due to the mentioned restrictions.

A closer look at software refactoring using symbolic execution 315

References

[1] Fowler, M., Refactoring – Improving the Design of Existing Code, Addison-Wesley
Professional, 1st ed. (1999).

[2] King, J. C., Symbolic Execution and Program Testing, Communications of the
ACM Vol. 19 No. 7 (1976).

[3] Java PathFinder, http://babelfish.arc.nasa.gov/trac/jpf

[4] Symbolic Java PathFinder, http://babelfish.arc.nasa.gov/trac/jpf/wiki/
projects/jpf-symbc

[5] Novitzká, V., Mihályi, D., Verbová, A. Coalgebras as Models of System’s Be-
haviour, in Proc. of AEI 2008, Int. Conf. on Applied Electrical Engineering and
Informatics ?2008, Athens, Greece, pp. 31–36. (2008)

[6] Slodičák, V., Szabó, Cs., Recursive Coalgebras in Mathematical Theory of Pro-
gramming, 8th Joint Conference on Mathematics and Computer Science, Selected
Papers, Komárno, Slovakia, July 14-17, 2010, Győr, Hungary, Novadat Bt., pp. 385-
394 (2011)

[7] Goguen, J.A., A Categorical Manifesto, Math. Structures in Comp. Sci., Vol. 1,
No. 1, (1991)

[8] Stay, M., Category Theory for the Java Programmer, Nov. 3, 2007,
url: http://reperiendi.wordpress.com/2007/11/03/category-theory-for-the-
java-programmer/ (2007)

[9] Zhang, X., Miao, H., Zeng, H., The Syntactic and Semantic Model of Web Ser-
vices Composition Based Category, in Proc. of Int. Conf. on Advanced Comp. Theory
and Engineering (ICACTE’08), Phuket, Thailand, pp. 444–449 (2008)

[10] Pócza, K., Biczó, M., Porkoláb, Z., Towards Effective Runtime Trace Gener-
ation Techniques in the .NET Framework, Journal of .NET Technologies, Vol. 4.,
Number 1-3, pp. 141-150 (2006)

[11] Kozsik, T., Pataki, N., Szügyi, Z., C++ Standard Template Library by Infinite
Iterators, Annales Mathematicae et Informaticae, 38:75-86, (2011)

[12] Rutar N., Almazan Ch. B., Foster J.S., A Comparison of Bug Finding Tools
for Java, ISSRE ’04 Proceedings of the 15th International Symposium on Software
Reliability Engineering, Pages 245-256. (2004)

[13] Szabó, Cs., Kotul’a, M., Petruš, R., The First Proposal on Objects and Mor-
phisms of the Software Evolution Category, In: SAMI 2014 : IEEE 12th International
Symposium on Applied Machine Intelligence and Informatics : proceedings : January
23-25, 2014, Herlany, Slovakia. - Danvers : IEEE, P. 59-62. (2014)

316 Cs. Szabó, M. Kotul, R. Petruš

