
Building scalable distributed network
systems using a modified pipeline design

pattern∗

Balázs Kreith

University of Debrecen, faculty of Informatics, Debrecen Hungary
kreith.balazs@inf.unideb.hu

Abstract

This paper attempts to do three things. The first is to examine the so
called pipeline design pattern for designing and implementing applications.
The second is to modify this pattern in order to make it available in program-
ming languages supporting single inheritance only. The third goal is to use
this pattern in a context of developing distributed network systems in which
several devices and participants communicate and work simultaneously. We
have developed our own framework in C# based on the pipeline design pat-
tern and used it to build distributed network systems. We show the usability
of the new pattern and suggest some directions for the future.

Keywords: pipelining, flow-based programming, internet of things, developing
distributed applications, device communication framework

1. Introduction

Pipelining is a generally used technique in low-level hardware programming[1]. This
implementation technique uses a sequence of parallel executed stages. (Figure 1).

Figure 1: Sequential processing of an arbitrary task

The parallel execution of stages (s1, s2, . . . , sn) allows us to increase the number
of executed tasks in a given range of time.

∗The work was supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The project
has been supported by the European Union, co-financed by the European Social Fund.

Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, January 29–February 1, 2014. Vol. 2. pp. 283–292

doi: 10.14794/ICAI.9.2014.2.283

283



Each stage contains a set of instructions, an input and an output. Every stage
input is the output of the previous stage. The data transmission method between
the stages can be various [2], here we focus on the asynchronous method.

In high-level programming languages, several frameworks [3,4,5] and concepts
[6,7] exist, and a design pattern for pipelining has been introduced by Vermeulen
et. al. [2]. This describes an object oriented concept implemented in C++ [8],
and using reusable objects for stages. Applying this pattern to decompose the
process implementation and its interaction, a better modularity may be achievable,
along with the parallelization possibility in processing and in execution both. This
provides greater flexibility and scalability and it increases the modularity of the
software and allows us to implement new features easier while maintaining the
application integrity. This design pattern uses multiple non-virtual inheritance,
which is not allowed in popular languages like Java or C#.

In this paper we rediscover this design pattern, examine its possibilities further
and redesign it using single inheritance. The modified pipeline design pattern
is implemented in .NET, but other high-level object oriented languages can use
it as well. At the end of our discussion we show an example. The rest of the
article is organised as follows: Section two describes the original design pattern,
its terminology and advantages. In section three the structure of the pattern is
changed and new concepts are introduced. The concrete realization is discussed in
section four, where simple examples are given too. In section five we show how to
use this pattern in developing a complete system by building a full process network.
Finally we describe the possible future works.

The main contribution of this paper is introducing a modified pipeline design
pattern and showing its efficiency.

2. Overview of the original design pattern

Pipelined processes are built up by sequentially connected stages (Figure 1.). Each
stage is producing, consuming, transforming, or filtering data for the task it is
created for. Every stage has an input, an output, or both. By connecting these
interfaces, a pipeline is defined and it can be used for data transfer.

2.1. Terminology & structure

In Vermuellen et al. [2], stages are called processing elements. If a stage has only
input or only output, it is called an endpoint pipeline processing element (EPPE).
Stages that have both input and output are called interior pipeline processing
elements (IPPE). In implementation, inputs are inherited from the Reader and
outputs from the Writer class. Two processing elements are connectable if one part
is a Writer and the other part is a Reader.

Depending on the method of how data are entering from a predecessor stage’s
output into the successor’s input, three transfer types are defined: push-flow, pull-
flow or push-pull hybrid flow (commonly referenced as “data-flow”, see [2]). In

284 B. Kreith



the push-flow concept, a predecessor stage’s Writer sends data to its successor’s
input (which receives it). In the pull-flow concept, a successor stage’s Reader
demands data from its predecessor’s output. (which supplies it). To perform data-
transfer, one part (input or output) must initiate the transmission. This part
is called the active part. The other side, which is fulfilling the request is called
the passive part. Extending the Reader and Writer classes with their possible be-
haviours, ActiveReader, ActiveWriter. PassiveReader and PassiveWriter classes are
created. These are EPPEs. By combining these classes using multiple inheritance,
the following IPPEs are created: ActiveReaderPassiveReader, ActiveReaderPas-
siveWriter, PassiveReaderPassiveWriter and PassiveReaderActiveWriter. For the
Booch diagram of these elements see [2]. For a better understanding, the next
section describes an example.

2.2. Example of usage
To realize a push-flow mechanism, anActiveWritermust connect to aPassiveReader.
A pull-flow operation is realizable by connecting aPassiveWriter to anActiveReader.

A data-transfer is initiated by an ActiveReader or an ActiveWriter. A stage is
executing its process after acquiring data. Parallel execution of stages is done by
using threads.

For synchronization, a buffer has to be introduced between two threads. This
is a PassiveReaderPassiveWriter. An example of constructing a pipelined image
processing is shown in Figure 2.

Figure 2: Pipeline design pattern for image filter processing

In the example shown in Figure 2, the tasks are the following: loading images
filtering them and then saving the results. Here, a push-pull hybrid flow mech-
anism is used. The Load Image stage is using push-flow by sending the loaded
image into the first queue. When the Filter Image stage is ready for execution, it
demands an image from the first queue. After the filter procedure is done, it sends
the filtered image to the second queue. Finally, the Display Image stage, which
is using a pull-flow, continuously demands an image from the second queue and
displays it. Here, every stage that contains an active interface is running on its own
thread. A queue between two threaded stages is used as a buffer for synchroniza-
tion. Queues, Load Image, Save Image and Filter Image elements are concretized
stages inherited from a basic element. The stages’ processes use the functor idiom

Building scalable distributed network systems . . . 285



[9] in the implementation. Queues can be FIFO, LIFO, priority queue, etc. The
different threads run parallel, and the buffers ensure the synchronization between
these threads, thereby the time needed for filtering several images continuously is
reduced.

The connection methods of different data-flow mechanisms (one reader to many
writers, or reversely) gives further possibilities for designing applications that per-
form a process.

2.3. Further possibilities and limitations

In the data-transfer mechanism, one active part can send data to or demand data
from one passive part, but one passive part may receive from or supply many ac-
tive parts. This indicates that in a push-flow mechanism, one PassiveReader may
receive data from many different ActiveWriters, and in a pull-flow mechanism, one
PassiveWriter may supply many ActiveReaders. The first case (one PassiveReader
to many ActiveWriters) opens the possibility for multiplexing messages from differ-
ent senders, and the second case (one PassiveWriter to many ActiveReaders) can
be used for distributing data amongst many stages.

Regarding the example described in Figure 2, let us suppose the following: The
load and image stages are much faster than the filter image stage. For that reason,
we can introduce many filter stages and connect them to the first and second
queues. This can be done without any structural modifications on the concrete
classes, with slight modifications in the implementation.

Going further, we may want to distribute the calculation amongst several com-
puters, or we may want to create a more complex network between the stages for
controlling the data-flow.

To Distribute the computation we need to create stages, which demand data
from the first queue via a network connection and send the result data to the second
queue. These new stages need to handle network connections, data transmissions,
connection failure, etc.

Suppose we count the number of images available in the first queue and want
to pause the load state if the number of available images, for instance, is more than
five. Using the pipeline concepts, we want to send information from the first queue
to the Load image stage whether we need more image or not. For that reason, we
have to add new interfaces. This can be done by inheriting the appropriate base
classes, however we cannot use one base class more than once, which limits our
possibilities.

We modified the original design pattern for two reasons: First, we changed the
inheritance hierarchy in order to implement it in object oriented languages that
allow only one base class (i.e.: Java, C#). Secondly, we reorganized the structure
to extend the flexibility of the original design pattern.

286 B. Kreith



3. Modifications on the original design pattern

Our approach for redesigning is based on the decomposition of responsibilities in
the pipelining design. We determine three area of responsibilities: Processing,
Connection, Transmission.

Figure 3: Modifications related to processing, transmitting and
connecting stages

3.1. Redesigning the original structure

A stage is created to perform a task. We focus on this in our design’s inheritance
hierarchy in order to create abstract stages. The transmission and connection meth-
ods are implemented in different classes and they are referenced as an attribute by a
derived abstract stage. The connection is responsible for establishing a connection
between two stages. It is realized in a class named Plug. Depending on how many
interfaces we need, a stage may contain as many Plugs as necessary. A plug may
be bound or it may be connectable. A connectable plug connects and sends (or
demands) data to (or from) a bound plug. This is similar to the previously men-
tioned connection between an active and a passive part. Plugs bind a transmission
or connect to one via a bound plug. The transmission’s main responsibility is to
ensure data exchange between two stages. They can use different technologies to
fulfil this task (delegates, socket communications, COM interfaces, etc.).

This separation isolates the structure of connecting two stages, transmitting
data between them and performing an operation on a received (or requested) data.

3.2. Reorganizing the inheritance hierarchy and introducing
new elements

For the three possible data-flow mechanisms, we created three packages: Pushers,
Pullers and Adapters. The Pushers and Pullers packages realize push-flow and
pull-flow mechanisms, while elements of Adapters are used for realizing a push-pull
hybrid flow (Figure 3).

Both the Pushers and Pullers packages contain the following four basic elements:
Transmitter, Transceiver, Receiver and Threader. Transmitter is a stage, which

Building scalable distributed network systems . . . 287



Figure 4: Boch diagram of the modified pipeline design pattern

has output only, and Receiver is a stage, which has input only. They are EPPEs.
We created two basic IPPEs for Pushers and Pullers packages: Transceiver and
Threader. Both have one input and one output. Transceiver performs a process
on data that goes through a stage. Threaders are active objects [10] running
on their own thread and they contain a buffer. The main task for a threader is
to separate its predecessor and successor stages into two different threads. The
push-flow type Transmitter and the pull-flow type Receiver are also active objects.
Transceivers, being a pull-flow type Transmitter and a push-flow type Receiver, are
passive objects. They are activated by their input or output. The push-flow type
Transmitter and the pull-flow type Receiver are active objects.

The Adapters package contains IPPEs for two possible cases. When a push-
flow element is desired to connect to a pull-flow element, then only time the buffer
needs to store the data sent by a predecessor push-flow stage is until the successor
pull-flow stage demands it. This element is called an Accumulator. The opposite of
this case is when a pull-flow type stage wants to connect to a push-flow type stage.
In that case, an element is necessary for demanding data from its predecessor pull-
flow stage and sending it to a push-flow type successor. This element is called a
Relayer, and it is an active object. Accumulators and Relayers are IPPEs.

The above mentioned elements (Transmitter, Receiver, Transceiver, Threader,
Accumulator, Relayer) are basic abstract elements. A summary of all basic elements
used for realizing push-flow, pull-flow or hybrid-flow mechanisms are shown in
Figure 5.

We introduced a graphical notation for different types of basic abstract elements
as it is shown in Figure 4. Rectangles indicate stages. Thicker lines indicate active
objects. Stages, which are acting actively also contain a thread notation inside

288 B. Kreith



Figure 5: Abstract elements of the modified pipeline design pattern

of their rectangles. Circles on the stages’ left and right side indicate plugs that
are responsible for connecting stages with each other. Empty circles are indicating
connectable plugs, and filled circles indicate bound plugs. A connectable plug can
connect to a bound plug. Circles on the stages’ left side always indicate inputs. On
the ride side outputs are indicated. The transmission is represented by an arrowed
line. The direction of the transmission is depending on the type of the data-flow.
These lines from plugs indicate transmissions. If the arrow points to the right, it
is a push-flow mechanism, and if it points to the left, it is a pull-flow mechanism.
Consequent lines inside a stage indicate buffers. Buffers are used by Threader and
Accumulator stages.

The above described modifications along with the introduced basic abstract
elements open the possibility for designing an application using pipelined processes
such as image processing. The above described graphical notation is developed for
documenting an application design.

4. Creating applications using the modified pattern

Generic programming is used in the implementation. Stages are only connectable
if the types of the data going through the interfaces, which we want to connect
with each other, match. Decomposition of Plugs and Transmissions allows us to
create a flexible design to the application we want to realize.

4.1. Creating a simple application

In the following, we show a concrete program that uses the modified pipeline design
pattern and realizes the example introduced in section 2 (load-filter-save image).

In Figure 6, the previosly described image filtering process is shown by using our
graphical notation. The code belonging to this example is shown in code snippet
1. The abstract elements introduced in previous sections are used as base classes
of the concrete elements (LoadImage, FilterImage, SaveImage). The connection
between the stages is configured in the main program.

Building scalable distributed network systems . . . 289



Figure 6: Modified pipeline design pattern for image filter process-
ing

Code snippet 1: Source code of the image filter processing

4.2. Creating distributed network application

The decomposed Transmission and Plugs allows us to distribute the application
amongs several hosts. This can be done by creating our own Transmission and
using it in the Connection method or we can create a component for this purpuse.

In Figure 7, two additional components are added to the previosly described
example: A TCP sender and the TCP receiver components. The application task
is distributed among the hosts (Host1, Host2) using the additional components.

Another advantege of the decomposition of Plugs and the Transmission is to
add as many plugs to a stage as much we want. More plugs of one stage indicate
more interfaces, thereby a graph of process interactions may be described by using
these elements..This allows us to build many kind of applications and services.

290 B. Kreith



Figure 7: Distributed filter processing applications using the mod-
ified design pattern

5. Conclusions

Here we described modifications of the pipeline design pattern, in order to use it in
programming languages like C# and Java. With these modifications a concept for
building application is introduced and a flexible design is created for te applications.
The pattern is applyable for designing many kind of applications and services with
different languages and platforms, also it is a usable concept for distributing the
performance amongs several hosts.

References

[1] FOUNTAIN, Terence, and Peter Kacsuk. Advanced computer architectures: a design
space approach. Pearson Education India, 1997.

[2] Vermeulen, Allan, Gabe Beged-Dov, and Patrick Thompson. "The pipeline design
pattern." Proceedings of OOPSLA’95 Workshop on Design Patterns for Concurrent,
Parallel, and Distributed Object-Oriented Systems. 1995.

[3] Win32, S. D. K. "Programmer’s Reference-MSDN Library,"." Anonymous Pipes,"(C)
1996 (1992): 1-27.

[4] Lauterburg, Steven, et al. "A framework for state-space exploration of Java-based
actor programs." Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering. IEEE Computer Society, 2009.

[5] Thurau, Martin. "Akka framework."

[6] Agha, Gul Abdulnabi. "Actors: a model of concurrent computation in distributed
systems." (1985).

[7] Morrison, J. P. "Flow-based programming: A new approach to application develop-
ment, self-published: EAN-13 978-1451542325, 2010." (2012).

[8] Stroustrup, Bjarne. The C++ programming language. Pearson Education India,
1995.

Building scalable distributed network systems . . . 291



[9] Coplien, Jim. "Advanced C++ programming styles and idioms." Technology of
Object-Oriented Languages, International Conference on. IEEE Computer Society,
1997.

[10] Lavender, R. Greg, and Douglas C. Schmidt. "Active object–an object behavioral
pattern for concurrent programming." (1995).

292 B. Kreith


