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Abstract

Embedded domain-specific languages have become more popular due to
their expressive power. The tasks are composed at the level of the problem
domain. This paper shows the key elements and the benefits of implementing
embedded domain-specific languages in strongly typed imperative program-
ming languages. These ideas are useful for those people who use or implement
embedded domain-specific languages but they are not professionals in func-
tional programming and prefer imperative programming languages instead.

The most common host language of the domain-specific languages is a
functional programming language, because of the freedom to introduce cus-
tom operators. The investigation is based on a strongly typed imperative
language which allows to define such operators. Domain-specific languages
increase abstraction level and hide details. This paper explores other aspects
of domain-specific languages for functional programmers.

The key language element is in functional languages to define custom op-
erators. These language elements must be found in the host language for
implementing an efficient embedded domain-specific language. In this pa-
per there is an example language to demonstrate the expressive power. The
investigation concludes that the benefits of using an imperative language
to implement an embedded domain-specific language are the increased ex-
pressiveness by eliminating redundant parentheses’ and unnecessary verbose
function names from the source code. Based on the strong static type system
the custom types preserve the type-correctness.

This paper shows ideas and recommendations about how to implement a
domain-specific language in a strongly typed imperative language.
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1. Introduction

Domain-specific languages (DSL) have become more popular due to their expressive
power. These languages are designed to special purpose with specialized features.
DSLs can be subdivided to markup languanges, modelling languages and program-
ming languages. Some DSL kinds can be used for common domains, such as HTML,
and for more specific purposes. DSLs are operating at higher level hiding details
from the DSL user. The syntax varies in a wide range in order to be familiar to
the experts of the domain.

Implementing a brand new DSL is very expensive since designing a new lexical
analyser, and building a new parser have high costs. Selecting the execution con-
text is a quite difficult task. Many DSLs are embedded into an existing language
in order to reduce the costs. This language is called the host language. There-
fore, a DSL uses the lexical analyser, the parser, and the semantic checker of the
host language, which is comfortable. The embedding procedure extends the set of
language elements of the host language. The new elements are implementing the
special syntax of a DSL.

There are two different ways to embed a DSL into a host language. The shal-
low embedding provides the most flexible DSL syntax due to the fact that they
are storing expressions in string form. This style has a disadvantage at runtime,
because DSLs must parse its code at runtime and have to check a lot of conditions.
Furthermore, the shallow embedding does not facilitate the compiler of the host
language to check the written code. Checking the syntax and the semantic rules of
the embedded code can be done with an external tool only.

The deep embedding solves the most shortages of the shallow embedding by
being the extension of the host language. However, the deep embedding has more
requirements than the shallow one: it needs an extendable syntax and a strong
static type-system. The semantic rules can be defined with the type-system of the
host language. The flexibility of the syntax of the deep embedded DSL depend on
the host language. This dependency can be a disadvantage if the host language
is not flexible enough. Most of the functional programming languages are quite
flexible to meet the requirements. Embedded DSLs are usually developed in the
Haskell programming language [1, 2], because Haskell is platform independent and
it has a rich set of language elements. In this paper we consider only the deep
embedded DSLs.

The special syntax of a DSL can be more familiar to its domain expert. Due to
the special syntax, the domain expert is able to catch errors specific to the problem
domain. DSLs often install new constructs to describe domain problems, or they
even apply different programming paradigms. Thus, the syntax of a DSL may
reflect the usual notations of the domain to make it usable for the domain experts.
The capabilities of the DSL depend on the host langauge — hence, selecting the
right host language is a difficult task. There are additional requirements to the
host language. Several questions must be answered, such as: how to describe
the DSL (declarative or imperative), where to use the DSL (piece of software or
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stand-alone), who will use the DSL?

Although DSLs are indispensable in their domain, the DSL programs execute
most of their actions out of that domain. The program will works with classical
operations: creating threads, allocating low-level memory, opening network con-
nections, and communicating with the operating system. These operations must
done, but the user of the DSL do not have to know about this.

Nowadays many embedded domain-specific languages (eDSL) [3, 4, 5, 6, 7| are
written in Haskell. The key language elements are the algebraic data type [8], and
the operator overloading mechanism using custom operators. Algebraic data types
make embedding simple, while the pattern matching grants type-safe processing
by design.

The custom operators based on the strong type-system help the user of the
eDSL to write understandable codes by eliminating long function names. The
operators have symbols, precedence and associativity rules. Every well-adjusted
property is beneficial; a meaningful operator symbol helps to document the source
code, while good precedences and associativity rules can eliminate unneccessary
and disturbing parentheses. Furthermore, using operators is beneficial to the DSL
developer to introduce new operators easily.

The functional programming languages allow to introduce new operators, but
the imperative languages rarely support this feature. In this paper, we introduce
an imperative programming language called ScriptKernel (lately Welltype), which
allows the usage of custom operators and provides a strong static type system. The
language itself can be used as a DSL in many cases by extending new types and
operators. The purpose of our language is to perform massive compile-time checks,
and generate a fast binary which can be executed on various operating systems
and architectures. The compiled program (binary) can ran on a virtual machine,
providing portability and binary compatibility.

This paper is organized as follows: In Section 2 we describe the implementation
details of custom operators in ScriptKernel. We show the used techniques on a
complex number DSL example, which DSL is embedded into the ScriptKernel.
With this DSL we can define custom operators. We evaluate the custom operator
usage by an example in Section 3. The embedding type of the DSL affects the
custom operator usage and expansion. Future plans are discussed in Section 4 such
as solving problems by introducing algebraic data types in imperative languages.
Our paper concludes in Section 5.

2. Implementation

Our programming language — ScriptKernel' —is not an interpreted, but a compiled
imperative programming language. We are integrating into this language new
functionalities and language elements taken from other paradigms. The target of
the compilation is a custom virtual machine which supports multiple operating

Lately Welltype



266 A. Bardth, Z. Porkoldb

system versions. The ScriptKernel is a programming language originally used in
the computer game industry [9] but now has many advanced features. The language
design is influenced mainly by C++ [10, 11|, Ada [12], Eiffel [13], but some idea
came from Haskell [2], C# [14] and Java [15].

The usage of custom operators brings the flexible type of the language: the
private record. Many eDSLs use custom types to store private information. It is
important to keep the internal state away from any accidental access. The private
record is just a type name in the user program, and there is no information about
the structure of the actual record. Other application of the private records are
possible in the creation of new types especially composite types, such as complex
numbers and 128 bit integer represented by two 64 bit integers. In both cases
there are convenience reasons for implementing standard operators (+, -, *, etc).
However, there are special functions using the complex numbers, for example the
conjugate. We can overload an existing operator as follows:

function "~"(Complex c) : Complex
Complex res;
res.re, res.im = c.re, -res.im;
return res;

}

Note that in this example we assume that the defintion of the function and the
definition of the Complex type are placed in the same program. Otherwise, in a
general case the type invariant can be violated without any notification, which is
important when the program exports Complex as a private record. In this case we
should export a getter and a setter for the real and the imaginary part as well.

export
{
record Complex = private;
}
declare
{
record Complex
{
double re;
double im;
X
X
function Re(Complex c¢) : double
{
return c.re;
b

function Im(Complex c) : double
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return c.im;

}

But the Complex type does not have any invariants, so exporting it as a regular
record is acceptable. Fortunately, the custom operator mechanism does not depend
on the record type.

Before implementing a custom operator, the used operator symbol must be
introduced. In the ScriptKernel it is considered the declaration of the operator
class. This operator class consists of three components: the operator symbol, the
associativity, and the precedence.

The symbol can be any sequence of \, -, =, =, !, <, > + & %, ~, *, /, excluding
the /*, the */ and the //, because these are control sequences of the comments.
The associativity must be left or right, and the precedence must be between 3
and 15 inclusive. A higher precedence implies that the operator will be evaluated
faster than an operator with a lower precedence.

Regarding the complex numbers, we can define a new comparison for the com-
plex conjugates. By definition, two complex numbers are complex conjugates if
the real parts are the same and the imaginary parts have equal magnitude but
opposite signs. The following code declares the new operator class of ==. The
new operator will be left associative with the precedency level of 10, similar to the
built-in operator ==.

declare
{
operator ="= left 10;
}
After that, we can use the =~= symbol like any other operator: creating new opera-

tor functions to implement the operator functionality, then using it in expressions.
The following code implements the operator of complex conjugates.

function "="="(Complex lhs, Complex rhs) : bool
{
return lhs.re==rhs.re && -lhs.im==rhs.im;
}
The next snippet shows how to use this =7= operator. In the if statement the con-

dition must be an expression with type bool. The result type of the == operator
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meets this requirement.

main
{
Complex a, b;
if(a ="= b)
{
write("They are complex conjugates.\n");
}

}

The language provides default initializations for every type including record and
private record too. The default values will be as follows: the default value is 0.0 for
a variable of type double, "" for string, false for bool, and so on. In the code
snippet above, the two Complex variables a and b will be defaulted to the complex
zero (real and imaginary parts equals to 0). This implies that the condition of
the if statement will be true, and the message appears on the program’s standard
output.

2.1. Implementation details

This experimental language uses flex for lexical analyser and bisonc++ for parser.
These tools are successors of the lex and yacc tools [16]. The task is to implement
the custom operator support with these tools. The problem is that, these tools do
not provide any assistance to implementing operators with custom precedency level.
The solution is to define the regular expression for the general operator symbols,
and to set the token’s value with the information of the defined operators. If the
compiler context contains an operator class like operator ="= left 10, then the
lexical analyzer knows this, and it returns the OP_LEFT10 token when the ="=
accepted. The related flex code is as follows:

{operator} { return Parser::Lexer_Operator(this); }

The Lexer_0Operator () function uses an std: :map to look the operator symbol
up, and if it is found, then it returns with the right token. If the given symbol
is not found, the UNBOUNDOPERATOR token is returned to indicate the fact that the
operator is unbound.

The UNBOUNDOPERATOR token is used in the parser’s operator class declaring
rule. The related bisonc++ code is below. The operator symbol will be granted
via a string. The associativity part is a common identifier. This is done to avoid
the left and the right identifiers being keywords. The compiler will check the
content of the identifier and report an error if it is neither the left or the right.
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The range of the precedence level must be checked too.

KW_OPERATOR UNBOUNDOPERATOR IDENTIFIER I32DEC SEMICOLON
{

}

If the paramteres are correct and the operator can be declared, then the operator
will be inserted into the earlier mentioned map with the resultant token. In the
bisonc++ expression rules are instances for all possible operator tokens, so the
precedences are still controlled by the bisonc++.

3. Evaluation

Modes of embedding a domain-specific language determines its flexibility and safety.
In Haskell language the common embedding strategies are shallow and deep embed-
ding. Shallow embedding is more flexible, but with high risk of errors and syntax
errors even. Also deep embedding has some troubles with extending. The type of
embedding cause the problem. In our language we show that the language can be
used as the DSL, and there is not necessary to embedding literally.

Using operators within a source code can help to understand itself, because
the reduced number of explicit function calls provides less distractions in the code.
The importance of the custom operators is outstanding, therefore our language
supports this.

An other perspective is the hot program updating. Because we have a virtual
machine which can be used via library and as standalone tool, the loaded code
can be replaced any time without stopping the host program. This feature is most
commonly required, and native programs do not support this feature. Moreover the
operating system resources can be supervised, because the virtual machine uses the
functions of host program. This feature helps to protect the operating system from
external attacks, so this is an important security reason to use a virtual machine.
One of the famous language which supports hot code swap is the Erlang [17, 18].

4. Future works

We plan to develop the algebraic data types into our imperative language. Alge-
braic data types are very useful, for example we able to implement the union type
with it, and this is a nice way to create recursive data types. The question is how to
prepare the algebraic data type for an imperative programming language? There
are some contradictions with this: in functional languages the pattern matching is
a natural way to fork on the parameters. However, there is no usual way to match
patterns in imperative languages.
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When the algebraic data types are ready to use, the combination with the
custom operators will open new freedom and opportunities in developing DSL
languages. The combination of the flexibility and the safety will characterize the
new version of our language.

5. Conclusion

In this paper we discussed how the expressive power of embedded Domain-specific
languages can be increased by using custom operators. Instead of using verbose
function names and disturbing parenteses clever operator overloading make the
source code more clean and understable. In this paper we introduced an imper-
ative programming language — ScriptKernel — which allows custom operators and
provides a strong static type system. The language itself can be used as the DSL
in many cases with extending new types and operators.

We described the overloading mechanizm and its implementational details of
ScriptKernel. We used an example to evaluate the steps and the technical back-
ground of the custom operator mechanism in our language. The virtual machine
guarantees the synchronization of the operator classes and the operator functions,
so using custom operators never get contradictions.
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