
A methodology for measuring software
development productivity using Eclipse IDE

Gábor Antal, Ádám Zoltán Végh, Vilmos Bilicki

University of Szeged, Department of Software Engineering
antalg@inf.u-szeged.hu, azvegh@inf.u-szeged.hu, bilickiv@inf.u-szeged.hu

Abstract

During software development processes many methodologies and technolo-
gies are used which can be examined and compared by many points of view.
One of the important aspects is the development productivity which affects
development time and costs significantly. It is the composition of many fac-
tors but actually not all relevant and affecting factors and their relationships
are known. Measuring the development productivity can be very useful if we
would like to see that:

• How much of the total development time takes the real development?

• How long is the real development time of specific software components
and layers?

• How much time does a bug fix or the implementation of a new feature
take in specific components or layers during software evolution?

Beside the development time it is also worth to examine the quality of the soft-
ware using various software metrics. Therefore a special tool is needed which
can perform real time productivity measurements during the development
but at present there are only a few tools for this task with limited measure-
ment capabilities. The goal of this paper is to introduce a methodology for
measuring productivity (even for specific software units) with defining a list of
relevant factors and events to be observe (e.g. file and user interface events).
Besides, this paper presents a measurement tool for monitoring development
productivity in the Eclipse IDE (Integrated Development Environment). We
have successfully measured a former project using this Eclipse-based tool
and evaluated the measurement results to examine the development time of
specific application layers.

Keywords: software development, productivity, development time, metrics

Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, January 29–February 1, 2014. Vol. 2. pp. 255–262

doi: 10.14794/ICAI.9.2014.2.255

255



1. Introduction

Productivity is one of the most important factors in software development projects,
which affects the costs and time requirements of the development process signifi-
cantly. Therefore, it is a very important area of software engineering research to
analyze and improve software development productivity. However, defining pro-
ductivity is still a very difficult problem, because it is the composition of many
factors and not all relevant and affecting factors and their relationships are known
yet.

Former articles and studies [1], [2], [3], [4] analyzed and collected many affecting
factors of software development productivity. These factors can be divided into the
following two main categories.

• Technical factors: these factors are related to the technical attributes and
characteristics of the development process. Some examples of technical fac-
tors: complexity of the software product, reusability of software components,
programming language, frameworks and libraries, development practices, de-
sign patterns, use of developer tools.

• Human (soft) factors: these factors are related to the human attributes in the
project. They can be analyzed in terms of an individual person or the whole
team, which works on the project. Some examples of human factors: respect,
communication, fairness, team cohesion, support for innovation, capabilities
and experiences.

Measuring productivity is also very important for development process analysis
and improvement. The main goals of productivity measurement are measuring the
efficiency of the development, the skills of developers, and the real development
time of specific application layers, components, or the whole project. The results
of the measurement can be used to find the weak points of the development process
and improvement actions can be proposed to correct these weaknesses. However,
productivity analysis can be used in many areas of research, for example:

• Comparing different development models, methodologies, practices in terms
of productivity.

• Comparing different programming languages, technologies, frameworks in
terms of productivity.

• Detecting specific development strategies, patterns of developers.

The productivity of a software developer can be measured by observing and
collecting specific types of events related to the usage of the development environ-
ment, e.g., file events, user interface events. The goal of this paper is to introduce
a methodology for measuring productivity with defining some relevant factors and
events to be observed in the development environment, and a measurement toolkit
for monitoring productivity in the Eclipse IDE [5]. This paper also presents an

256 G. Antal, Á. Z. Végh, V. Bilicki



analysis method for calculating the real development time of application layers
with a case study using the measurement results collected during a former software
development project.

2. Related work

Monitoring the usage of development environments is not a new idea, some articles
and projects already exist in this research area. Most of these usage monitoring
applications were developed for the Eclipse IDE, because the development of plug-
ins is well supported in it and it can be extended with custom event listeners for
observing developer actions.

The Eclipse IDE contained a usage monitoring tool named Usage Data Collector
(UDC) [6] until version 3.7 (Indigo). It could collect data about loaded bundles,
keyboard shortcuts, menu and toolbar actions, perspective changes, and usage of
views and editors. The captured data were periodically uploaded to servers hosted
by the Eclipse Foundation. But the databases with the collected usage data are
not opened for public access.

In the [7] article an Eclipse plug-in is introduced, which can monitor keyboard,
mouse, scrollbar, and file change events into XML files, which can be converted to
Excel files. The Mylar Monitor [8], [9] can capture many user interface events (e.g.,
view, perspective, editor events) and commands (invoked by key bindings, menus
and toolbars). The CodingSpectator [10] is an Eclipse plug-in for monitoring the
usage of refactoring commands. Its extended version is the CodingTracker [11] plug-
in with the capability of capturing several other events, e.g., file events, interactions
with Version Control Systems, test and application runs.

These toolkits can monitor many types of events in the Eclipse IDE, but they
do not take some other important factors of productivity into account, such as
the current task of the developer, the interruptions and idle time intervals during
the development, and the quality metrics of the software product. Our goal is to
develop a productivity measurement toolkit which can monitor most of the user
interface events that can be captured by the existing tools, with the compensation
of the mentioned deficiencies.

3. Methodology for productivity measurement

As it was previously mentioned, the productivity of individual developers can be
measured by monitoring the usage of the development environment. Mostly it
means capturing the events of the user interface elements and resources (e.g., files).
But there can be other relevant factors, which should be monitored to measure the
efficiency of the development, for example:

• The actual task of the developer is very important for analyzing the collected
events and understanding the causes of event frequencies and patterns. For
example, if the developer has a bug fixing task, the number of file save events

A methodology for measuring software development productivity . . . 257



can be very low, because looking for the cause of the bug can be a long
process.

• Developers rarely use the development environment in one long working ses-
sion. There can be interruptions during the development, so the developer
has to work on another task. In other cases, there can be idle time intervals,
when the developer does not work with the development tools, e.g., lunch
break, reading documentations, learning from tutorials. These interruptions
and idle time intervals are important to calculate real development time re-
quirements of the project.

• Measuring the changes of the product quality can be also a useful perspective
of productivity monitoring. Therefore, it is necessary to collect code quality
metrics (e.g., cyclomatic complexity, coupling, lack of cohesion of methods),
when any part of the source code changes.

• It can be also useful to collect data about the structure of the source code to
monitor the structural changes of the software product.

For monitoring these additional factors, a new productivity measurement meth-
odology was defined. The measurement process is performed by a plug-in, which is
embedded in the development environment, and the captured data are uploaded to
a data collector server for further analysis. The measurement plug-in is responsible
for the following tasks:

• Monitoring all events related to files (creating, opening, saving, switching,
closing, deleting) and projects (opening, closing, creating, deleting).

• Monitoring events related to the user interface (windows, dialogs, editors,
views, etc.)

• Monitoring keystroke and shortcut events from the keyboard.

• Monitoring code movement events (cut, copy, paste).

• Monitoring code running events (start, debug, profile, stop).

• Monitoring the actual task of the developer, which can be selected from a pre-
defined list downloaded from the server. The state (new, started, suspended,
and finished) and progress of the actual task is also monitored.

• Monitoring interruptions and idle time intervals. The plug-in observes the
keyboard and mouse actions performed by the developer, and if the last action
was performed “too long ago”, it is considered as the starting point of an idle
time interval. The developer can confirm or reject this decision, when a new
action is performed.

• If a save event is captured related to a source code file, the structure of the
source code and the code quality metrics of the file are also monitored.

258 G. Antal, Á. Z. Végh, V. Bilicki



4. Eclipse-based productivity measurement

The previously presented productivity measurement methodology was implemented
in a plug-in for the Eclipse IDE. This toolkit can monitor all the mentioned types of
file and project events using custom implementations of IResourceChangeListener
and IResourceDeltaVisitor interfaces. User interface events are monitored related
to windows (open, close, switch), perspectives (open, close, save), views (open,
close, switch), dialogs (open, close), editors (open, close), with custom implemen-
tations of built-in user interface listeners, e.g., IWindowListener, IPartListener2,
IPerspectiveListener3. Keyboard events are collected with an SWT Listener, which
captures keystrokes and shortcuts. Code movement events are detected with an
IExecutionListener implementation; code running events are captured using an
ILaunchListener implementation.

The list of selectable tasks can be defined on the server and the plug-in instances
can download it. When the developer starts the Eclipse, the previously started task
can be continued. Task suspending, changing and finishing can be performed on
a special view (Figure 1), with the possibility to set the progress of the task and
write a comment related to it. When the developer closes the Eclipse, the actual
task is automatically stopped. The plug-in can be also used in passive mode, which
means there are no tasks to manage and only the previously mentioned types of
events are collected.

Interruptions and idle time intervals are detected using sessions. A session is
started when a task is started or a keyboard or mouse action is performed. A session
is finished when a task is suspended or the elapsed time since the last keyboard or
mouse action is higher than a predefined session timeout value.

When a save event is detected related to a Java source file, the plug-in col-
lects about 21 code quality metrics about the file and its package, with maximum,
average and standard deviation values if it is possible, e.g., Total Lines Of Code
(TLOC), coupling, Depth of Inheritance Tree (DIT), Nested Block Depth (NBD),
Specialization Index in methods, McCabe Cyclomatic Complexity, Weighted Meth-
ods per Class (WMC). Metrics are collected using the Metrics plug-in for Eclipse
[12]. The structure of the source file (names and relations of classes, fields, meth-
ods, annotations, etc.) is also captured using the high level Java model of Eclipse
JDT (Java Development Tools).

5. Calculating real development time for application
layers

Using the previously explained methodology, an algorithm was developed for cal-
culating the real development time of a file in the project for a specific developer.
This method is based on the analysis of the file events, which can have one of the
following types: open, switch, save, close, delete, left. Left file events are created
when a session is finished, so it is the starting point of an idle time interval. The

A methodology for measuring software development productivity . . . 259



Figure 1: Task selector view of the productivity measurement
toolkit

algorithm collects all types of file events for the given file and the open and switch
events for other files, ordered by the date of the events. After that, it iterates
over these events and determines the relevant intervals for the development of the
file, according to the type of events related to the given file. If the type of the
actual event is open, switch or save, and it is related to the given file, its date is
the starting point of a relevant interval, and the endpoint is the date of the next
event in the list. The sum of the lengths of these relevant intervals gives the real
development time of the given file.

These real development time results can be aggregated for specific application
layers. If the naming conventions are well defined and strictly used in the project,
then the application layer for the file can be determined using simple rules accord-
ing to file names, extensions, class names and package names, e.g., if class name
contains “DAO”, then it is a class of the DAO (Data Access Object) layer. In other
cases, the application layer can be determined by analyzing the structure of the
file, e.g., @Entity annotation on the class means that the source file belongs to the
entity layer.

We have measured one of our former projects with the previously presented
toolkit, and calculated the real development time for application layers by a lead
software developer weekly. The results can be seen on a stacked area diagram on
Figure 2. It can be seen that the developer had to work a lot in the implementation
of the software in the preparation phase, until week 20. From week 21, he had less
implementation tasks and he could concentrate on his management tasks, too.

6. Summary and future plans

In this paper we discussed some existing productivity measurement toolkits for
the Eclipse IDE, and introduced a new methodology with an Eclipse-based toolkit
for measuring the productivity of software developers. An algorithm was also

260 G. Antal, Á. Z. Végh, V. Bilicki



Figure 2: Real development time for application layers by a lead
software developer weekly

developed for calculating the real development time by a specific developer for files
and application layers, using the collected measurement results. In the future we
would like to perform additional productivity measurements on our projects, and
analyze the results in terms of the following research areas:

• Comparing different development models (e.g., waterfall, prototype-based,
agile).

• Comparing different Java Enterprise Edition technologies.

• Detecting and comparing different developer strategies, patterns.

Acknowledgements. The publication is supported by the European Union and
co-funded by the European Social Fund.

Project title: “Telemedicine-focused research activities on the field of Mathe-
matics, Informatics and Medical sciences”

Project number: TÁMOP-4.2.2.A-11/1/KONV-2012-0073

References

[1] CHINUBHAI, A., Efficiency in Software Development Projects, International Journal
of Software Engineering and its Applications, Vol. 5 No. 4 (October, 2011), 171-179

[2] WAGNER, S., RUHE, M., A Systematic Review of Productivity Factors in Software
Development, Institut für Informatik, Technische Universität München, Technical
Report TUM-I0832

[3] MAXWELL, K. D., FORSELIUS, P., Benchmarking Software Development Produc-
tivity, IEEE Software, Vol. 17, No. 1 (January/February, 2000), 80-88

A methodology for measuring software development productivity . . . 261



[4] JIANG, Z., COMSTOCK, C., The Factors Significant to Software Development Pro-
ductivity, International Journal of Computer, Information Science and Engineering,
Vol. 1, No. 1 (2007), 68-72

[5] http://eclipse.org/, retrieved on: 2014. 04. 30.

[6] http://www.eclipse.org/org/usagedata/, retrieved on: 2014. 04. 30.

[7] MCKEOGH, J., EXTON, C., Eclipse plug-in to monitor the programmer behavior,
Proceedings of the 2004 OOPSLAWorkshop on Eclipse Technology eXchange (2004),
93-97

[8] KERSTEN, M., MURPHY, G. C., Mylar: a degree-of-interest model for IDEs, Pro-
ceedings of the 4th International Conference on Aspect-oriented Software Develop-
ment (2005), 159-168

[9] MURPHY, G. C., KERSTEN, M., FINDLATER, L., How Are Java Software Devel-
opers Using the Eclipse IDE?, IEEE Software, Vol. 23, No. 4 (July/August, 2006),
76-83

[10] http://codingspectator.cs.illinois.edu/, retrieved on: 2014. 04. 30.

[11] http://codingtracker.web.engr.illinois.edu/, retrieved on: 2014. 04. 30.

[12] http://metrics2.sourceforge.net/, retrieved on: 2014. 04. 30.

262 G. Antal, Á. Z. Végh, V. Bilicki


