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Abstract
In the operative planning of public transport, the vehicle scheduling prob-

lem (VSP) is one of the most important tasks. In the single depot vehicle
scheduling problem (SDVSP) there is only one depot, each vehicle being in
the same depot; and the task is to construct a valid set of vehicle schedules in
such a way that each timetabled trip is covered by a vehicle schedule (vehicle
shift). The objective to be minimized is the sum of the cost of the timetabled
trips and the cost of the trips without passengers, where the latter trips are
the deadhead trips and the pull-in and pull-out trips. (The vehicles have
to return to the depot at the end of the day.) This optimization problem
can be solved by solving a minimum perfect matching problem of a weighted
bipartite graph (Bertossi et al., Networks, Vol. 17, 1987). Here, we consider
the basic problem of vehicle scheduling (BVSP), which is a special (fleet min-
imization) case of SDVSP, where the cost to be minimized is just the number
of vehicles used (vehicle schedules) and we do not consider any other possible
costs. We show that BVSP can be solved by using the maximum matching
of a non-complete, unweighted bipartite graph.
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1. Introduction

The Vehicle Scheduling Problem (VSP) is a classical optimization problem of pub-
lic transport. For VSP, we are given a set of timetabled trips for a given day. The
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timetable is given in advance. (In general, the timetable is prescribed by the local
council.) The other tasks of the vehicles are determined by the public transport
company staff during the operative planning phase. With VSP, we need to con-
struct the scheduling of the vehicles for a given day in such a way that it provides
a feasible and efficient scheduling for each timetabled trip. Each timetabled trip
is given by its departure and arrival time, departure and arrival stations as geo-
graphical places. Deadhead trips are also allowed, among the appropriate stations
of two compatible trips, and also between the depot and any station. A pair of
two timetabled trips is compatible if there is sufficient time for a deadhead trip
between them. The timetabled trips and the deadhead trips should have (non-
negative) costs. Solving VSP involves scheduling a fleet of vehicles to cover a set
of tasks at minimum total cost, where the total cost is the sum of each cost.

In the single depot vehicle scheduling problem (SDVSP), there is only one depot
and each vehicle starts from this depot at the beginning of the day and returns
to this depot at the end of the day. The SDVSP problem was solved by Bertossi
et al. in 1987 [2]. These authors showed that SDVSP is equivalent to finding a
minimum perfect matching of a complete, weighted bipartite graph. This proof is
elegant and quite nice.

In the multiple depot vehicle scheduling problem (MDVSP) [3], there are more
depots and for each trip a subset of the depots is described. Only the vehicles from
that depot set can supply vehicles for the trips. In this case, in a valid schedule
each pair of consecutive trips must be compatible and each trip of a vehicle shift
can be supplied from the depot where the given vehicle originates from. Each cost
(the cost of any timetabled trip or deadhead trip) may depend on the depot of a
vehicle. In [2], Bertossi et al. showed that MDVSP is an NP-hard problem. In
this article, we will focus on SDVSP, but a general review of both the single and
multiple depot cases can be found in [1,3,4,6,7].

Here, we consider the so-called basic problem of vehicle scheduling [5], or BVSP
for short. BVSP is a special case of SDVSP, where the cost in SDVSP is just the
number of vehicles in the schedule (i.e. the number of different vehicle shifts in
the solution). In other words, we are only interested in determining the minimum
number of vehicles (each vehicle is assumed to be of the same type), which is nec-
essary for meeting the (daily) scheduling requirements. BVSP can be interpreted
as a special fleet minimization problem as well. We will show that BVSP can be
solved by finding a maximum matching of a non-complete, unweighted bipartite
graph. The number of the edges of this graph depends on the number of possible
deadhead trips. Usually, the number of elements of the set of deadhead trips –
which turns out to be the same as the number of the edges in our bipartite graph
– depends on the type of the public transport, but typically this has around n2/2
number of edges (e.g. for a dense bus timetable of a city).
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2. Definitions, background

Below, we just focus on BVSP, which is a special case of SDVSP. The task of BVSP
is to determine the minimum number of vehicles needed to supply the trips of a
prescribed timetable in a given time period (typically one day) based only on the
timetabled trips of this interval and the possible deadhead trips. The time period is
typically a day, but other time intervals can be considered as well. We will suppose
that we have a sufficient number of vehicles, that each vehicle is of the same type,
and that from the depot the departure of any trip is realizable in time. (A vehicle
can run to any departure time and geographical station of any trip in time.) Apart
from the number of the vehicles, we will not consider any other cost. We will not
consider the cost of the trips or the cost of the depot trips (pull-in and pull-out
trips).

Let us denote by T the set of timetabled trips in the given time period. Each
i∈T timetabled trip is given by its departure time dt(i), departure station dg(i),
arrival time at(i), and arrival station ag(i). Two trips i∈T and j∈T are compatible
if the same vehicle can supply them, i.e. a deadhead trip is feasible between i and
j. That is, if at(i) ≤ dt(j) and the length dt(j)-at(i) is less than or equal to the
travel time of a deadhead trip from dg(i) to ag(i). (We shall assume that each
vehicle requires the same travel time to perform the same trip.)

In BVSP, we need to determine the minimum number of vehicles required based
on the data of the timetabled trips (at(i), dt(i), ag(i), dg(i), for each i∈T ) and
deadhead trips (compatible i,j pairs of trips). Of course, this number is a lower
bound for the number of vehicles of any valid vehicle scheduling in a given time
interval.

Figure 1: An example of six trips that can be solved using three
vehicles. Here the geographical stations are not shown, just the

possible deadhead trips

Figures 1 and 2 provide pictorial examples. In both figures the set of trips is the
same, but the set of deadhead trips is different; and for this reason the solutions of
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Figure 2: A modified version of the example in Figure 1, which
shows that by allowing a different set of deadhead trips, a similar

case can be solved by just using four vehicles

the examples may be also different.
The approach of Bertossi et al. [2] for finding the solution of SDVSP can be

applied to find the solution of BVSP as well. It solves the problem by treating it
as a minimum cost matching problem of a complete bipartite graph. In the case
of BVSP, the weight assigned to each edge is 1, representing of the appropriate
deadhead trips or depot trips.

In the following, we will describe our solution to BVSP. We get the solution by
solving the maximum matching problem of a non-complete, unweighted bipartite
graph. This graph is built by using the timetabled trips and by using the deadhead
trips between any compatible pair of trips. The nodes of the graph represent the
end-points of the timetabled trips (which are the end-points of the deadhead trips
as well).

With BVSP, the cost we have to consider is 1 for each vehicle used. The cost of
a valid scheduling is the sum of these, i.e. the number of vehicles used. In a valid
scheduling each consecutive pair of timetable trips is compatible with each other in
each chain (shift) of a vehicle, and we have to cover each timetabled trip by exactly
one vehicle (shift). With BSVP we do not have to consider any other costs of the
timetabled trips, the costs of the deadhead-trips or the costs of the depot trips.
We will assume that in theory each vehicle is of the same type; more precisely we
will suppose that there is a homogeneous vehicle fleet with a sufficient number of
vehicles and that we do not have any special vehicle requirements for the trips.
Each vehicle can perform each trip with the same journey time. Furthermore, in
the BVSP model we will not consider the driver shifts, regulations for the working
time and driving time, or any other requirements for the driver shifts (meal breaks,
etc.). Actually, in the BVSP model we can assume that the drivers are robots that
do not need any breaks, and so on.

Hence, we are interested in determining the minimum number of vehicles (and
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the same number of drivers) that is necessary to provide each timetabled trips.
From the above reasons, it can be readily seen that it will be a theoretical lower
bound for it.

3. The solution of BVSP

Next, we will show how we can determine the minimum number of vehicles needed
to supply the trips for a given time period, i.e. to get a valid vehicle scheduling
in the period. This time interval I can be chosen arbitrarily. It is clear that when
choosing a full day for this interval we will get the solution for a given day as well.
This choice is typical, but our method also works for arbitrarily longer or shorter
time periods.

Here, we identify all the five possibilities for the relationship between the time
interval I and a timetabled trip i. There are the following:

A) d(i) is in interval I and a(i) is not,
B) a(t) is in interval I and d(i) is not,
C) both of a(i) and d(i) are in I,
D) neither a(i) nor d(i) is in I, but the trip includes the whole interval I,
E) neither a(i) nor d(i) is in I, and the whole the trip i is outside of I.

Below, we will restrict ourselves to the trips of classes A, B, C and D. Thus we will
only consider those trips where the intersection of the time-period of the trip and
the time-interval I is not empty. We will not consider the trips of E, because they
will not matter if we analyze the interval I.

Let us denote by n1, n2, n3, and n4 the number of trips in classes A, B, C,
and D, respectively. It is clear that using the number of vehicles n1+n2+n3+n4
the problem can be solved. (It is a feasible solution, where each trip is a vehicle
schedule itself.) Otherwise, we cannot use fewer than n4number of vehicles in I
(because for each trip of class D we need a different vehicle). But it is possible to
decrease the sum n1+n2+n3, if we can create chains from the trips of class A, B,
and C. A chain must be a valid schedule shift, so the consecutive timetabled trips
of the chains must be compatible ones. Figure 3 shows an example for trips of the
classes A, B, C, and D of a time-interval Ik.

We should add that if we consider a whole day as time-interval I, i.e. the
timetable of a day, then each trip is (generally) in class C. Otherwise, if the given
time interval I is a sub-interval of a day, and the length of I is less than the
length of the shortest timetabled trip of a day; then we will not have trips in class
C, independently of the choice of I. The matching of the trips will then produce
chains of at most 2 trips.

In BVSP, we are interested in finding a valid vehicle schedule that employs a
minimum number of vehicles. For this, we have to chain (concatenate) some trips
of I and for an optimal solution we must do it in an optimal way. If interval I is
a day, then the chains will be the (vehicle) shifts of that day, and all the vehicle
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shifts together is in theory a vehicle schedule of the day. This is why BVSP may
be viewed as a fleet minimization version of SDVSP.

Figure 3: An example for the trip-classes A, B, C, and D in a time
interval Ik. The horizontal axis represents the time (we do not repre-
sent the geographical places of the stations, only the possible dead-
head trips among the timetabled trips). Here, n1=n2=n3=n4=2.
We give a feasible solution with 5 vehicles, with 3 deadhead trips,
so there will be a matching with value m=3 in the underlying bi-
partite graph. Hence, with n1=n2=n3=n4-m=5, five vehicles are
sufficient to solve the problem. (We have to apply different vehi-
cles to supply the trip chains 4-1, 3-5-2, and the trips 6, 7, and 8

themselves as special 1-length-shifts.)

For an interval I, we construct the bipartite graph GI=(UI ,VI ,EI), where UI

and VI are the nodes of the two parts of the graph, and EI is the set of the edges.
We assign it to the timetabled trips of the interval I; then for each trip of classes B
and C we create a node in UI , representing the departure time of the appropriate
trips and UI contains only these n2+n3nodes. For each trip of classes A and C,
we create a node in VI . Each node of VI represents the arrival time of exactly one
trip of A or C. And VI does not contain other node, so VI has n2+n3number of
nodes. The edge set EIof GI is defined in such a way that there is an edge between
two u∈UI and v∈VI nodes if and only if the trips represented by u and v are
compatible; i.e. they can be performed in a consecutive way (there is sufficient time
for a deadhead trip between them). Figure 4 shows the (automatically generated)
bipartite graph for a small example.

After these preliminaries, we will consider a matching of the bipartite graph GI ,
containing exactly m number of edges, and e=(u,v) is an edge of the matching.
Then the two trips, represented by u and v can be concatenated into one chain (of
a valid vehicle scheduling) because of the definition of the edges of GI . Here, the
appropriate trips are compatible.

Based on the above points, we can build an iterative procedure which constructs
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Figure 4: A small example for the generation of the bipartite graph

the chains of consecutive timetabled trips by transforming each edge of the match-
ing of GI to a deadhead trip of a valid chain. For each step of the procedure,
we consider an edge of the matching that we have not examined in the previous
steps. This procedure has m number of steps, because the matching has m edges.
Before the first step of the procedure, we have n1+n2+n3+n4trips and each can
be treated as a special, 1-length-chain of trips. Each iterative step involves the
examination of an edge of the matching. Doing this, we concatenate two chains of
the previous chains, based on the deadhead trip represented by the edge currently
been examined in the matching, and during a step the number of vehicles of the
previous step decreases by one. Then after the last (m-th) step of the procedure,
we find that n1+n2+n3+n4-m vehicles are sufficient to cover all the trips of I.

A scheduling obtained in this way is valid, because each trip is covered by a
vehicle (each trip is in a chain) and the consecutive trips are compatible because of
the edges of GI and the chains are independent (each trip is covered by only one),
since the appropriate edges of GI are disjoint due to the definition of matching.
We should add that this procedure works in both directions. Now, the following
lemma holds:

Lemma 3.1. Let us suppose that GI is a bipartite graph constructed in the above
way, representing the trips (of the classes A B, and C) of a time-interval I. In this
case there is a matching of GI that contains m number of edges, if and only if there
is a valid scheduling for the timetabled trips of I, using n1+n2+n3+n4-m vehicles.
(BVSP assigned to I can be solved using n1+n2+n3+n4-m vehicles.)

Proof. We will prove this using mathematical induction with i, where i is the
number of edges in a matching of GI .
Base case (case i=0). If we have an empty matching that contains no edge, then
there is no deadhead trip in the scheduling. It is a valid scheduling that uses
n1+n2+n3+n4 number of vehicles, where each vehicle chain contains exactly one
trip. Thus we have n1+n2+n3+n4 independent chains of trips. The converse holds
as well. That is, if the number of chains is n1+n2+n3+n4 in a chain, then there is
no deadhead trip between any pair of timetabled trips.
Inductive step (the step from i to i+1). Let us suppose that the above assertion
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holds for i (i ≤ 0), i.e. GI has a matching of i edges if and only if there is a
valid scheduling of the trips of i using n1+n2+n3+n4-ivehicles. That is, there are
n1+n2+n3+n4-i disjoint(independent) chains of trips such that each chain can be
supplied by one vehicle.

Let us consider a matching of GI containing i+1 edges. If we consider an
arbitrary edge of the matching, let us denote it by e’ (and suppose that the two
endpoints of e’ are u’ and v’ ). Then the other i edges of the matching identify
n1+n2+n3+n4–i disjoint (“independent”) chains of trips based on the induction
hypothesis; and this is a valid vehicle scheduling of the trips which can be served
by n1+n2+n3+n4–i vehicles. The two trips, represented by the two end-points
of edge e, are included in two different chains of trips. (We note that the trip,
represented by u is at the end of a chain, while the trip represented by v is at
the beginning of a chain.) The two chains have no common trips because of the
induction hypothesis (the chains were constructed based on i edges of the matching.
Furthermore, we needed two different vehicles to serve these two chains.

Upon examining edge e’, we see that it is possible to concatenate the two chains
by a deadhead trip. The existence of edge e’=(u’,v’) means that after the last trip
of the first chain, whose trip is represented by u’, can follow the trip represented
by v’ in a valid scheduling, after a possible deadhead trip (from the arrival station
of the trips represented by u’ to the departure station of the trip represented by
v’ ). After concatenating the two chains, it is sufficient that only one vehicle supply
the two chains instead of one, and the n1+n2+n3+n4–(i+1) chains we get will
be disjoint chains (because the i+1 edges of the appropriate matching of GI are
disjoint).

To prove that the converse also holds, let us suppose that we have a valid
scheduling of the trips of I, using n1+n2+n3+n4–(i+1) vehicles, covering each
timetabled trip by exactly one vehicle. If we consider a deadhead trip d of a chain,
and split this chain into two different chains, one chain is the part of the original
chain before d, and the other chain is the part of the original chain after d. In this
way, instead of one vehicle we need two vehicles to serve these two disjoint chains.
(Such a deadhead trip exists, because i+1>0.) Then we get a valid scheduling
by n1+n2+n3+n4–i vehicles. Hence the scheduling we get is a valid one for the
trips of I, using n1+n2+n3+n4–i vehicles to cover them, and the same number of
disjoint chains. Based on the induction hypothesis, there is a matching of GI that
contains i edges. Because of the definition of GI , there is an edge edof EI that
represents the deadhead trip d. The two end-points of this edge are not covered
yet by the matching, because the chains of the assigned scheduling are disjoint
(independent) ones – each trip being covered exactly once. Then, adding the edge
to the matching, we get a matching of the graph GI that has m edges. (Here we
used the fact that in the underlying bipartite graph GI , the edges of the matching
have no common points (what is the definition of a matching.) This proves the
lemma.

In this way, we proved that for each step of the iterative procedure we can
decrease the number of vehicles needed by one.
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Summarizing the above points, we see that we can indeed assign a matching
of GI to a feasible (valid) scheduling of the trips of I, and vice versa. To find the
minimum number of vehicles, we need to determine the maximum matching of GI .
This connection is stated in the theorem below.

Figure 5: A small example: how we get a solution to BVSP from
a solution to the maximum matching problem of the underlying

bipartite graph (see the example in Figure 4)

Theorem 3.2. Let GI be a non-complete bipartite graph, constructed in the above-
mentioned way for the timetabled trips, for a given time interval I. If the maximum
matching of this graph GI has m edges, then at least n1+n2+n3+n4-m vehicles are
required in a valid vehicle scheduling to cover each timetabled trip in an interval I.

Proof. Assume by contradiction that there is a valid scheduling of the trips of the
time interval I, which uses fewer than n1+n2+n3+n4-m vehicles. We need m4

vehicles for the trips of the class D, hence to serve the other trips (for the trips
of the classes A, B, and C), we need n1+n2+n3-m’ vehicles, where m’>m. Let us
consider such a valid scheduling of these trips of I. This valid scheduling contains
n1+n2+n3–m’ chains of trips, each one being assigned to exactly one vehicle. But
based on Lemma 3.1, GI has a matching with fewer than m edges, so a matching of
the graph with m edges is not a maximum matching of the graph. In this way, we
get a contradiction (arising from the fact that we assumed that using fewer than
m vehicles we could get a valid vehicle scheduling for the trips).

Figure 5 shows an example of the reconstruction of the solution of BVSP got
from a matching.

Remark 3.3. If we assign non-negative costs to the timetabled and deadhead trips,
then this method works by using a matching algorithm for the graph, where each
edge has a cost, whose cost is the same as the cost of each deadhead trip. (The
model dealt with above can be viewed as a special case of this, where each cost
is 1.)
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4. Summary

Here, we presented a solution for the basic problem of vehicle scheduling. We
found its optimum via a solution of a maximum matching problem defined on a
non-complete bipartite graph.
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