
Efficiency issues of computing graph
properties of social networks∗

Péter Englert, Márton Balassi, Balázs Kósa, Attila Kiss

Eötvös Loránd University
{enpraai,bamrabi,balhal,kiss}@inf.elte.hu

Abstract

In this paper we consider three different properties of social networks,
namely the number of the different triangles, the sizes of the strongly con-
nected components (SCC) and Linerank, which is offered as a substitute for
betweenness and can be efficiently calculated on graphs with more than 109

nodes [7]. We implemented the computation of these measures in three differ-
ent ways: sequentially, using the widely spread MapReduce model – Hadoop
in our case – and its newly emerging rival Giraph, which is based on the
Pregel system [11]. MapReduce and Pregel use distributed computation en-
abling high parallelization of the calculations. The algorithms calculating the
above measures can be grouped into three different families. In the case of
the triangles for a node only its close neighbourhood should be taken into
consideration. In the case of the SCC’s at least in the sequential approach
the graph should be traversed in a depth search manner, which can be pro-
hibitively expensive for the distributive systems. Finally, Linerank can be
computed by using an iterative matrix-vector multiplication. We ran our im-
plementations on several generated and real-world networks of different sizes
firstly in order to assess the degree of the benefit of parallelization offered
by the last two technologies for the algorithm families. Secondly, to see for
which magnitude of the size of the networks it is more beneficial to choose
one the aforementioned models instead of the sequential approach.

Keywords: Social Networks, MapReduce, Pregel, Graph Measures

MSC: 68Q85

∗This work was partially supported by the European Union and the European Social Fund
through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).
Besides, this work was completed with the support of the Hungarian and Vietnamese TET (grant
agreement no. TET 10-1-2011-0645).

Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, January 29–February 1, 2014. Vol. 2. pp. 113–120

doi: 10.14794/ICAI.9.2014.2.113

113



1. Introduction

In the last decade the size of the data that is to be analyzed both in scientific
experiments and practical applications has become enormously large in many oc-
casions, which posed several challenges to computer science and to the development
of information technologies. Besides the new algorithms, new programming models
have also emerged that refined the methodologies and systems of distributed com-
putation. The most well-known invention is probably the MapReduce paradigm [3]
that has already broken through the boundaries of laboratories of research institu-
tions and has appeared in the praxis of larger companies. In MapReduce the data
distribution, replication, fault-tolerance and load balancing is handled automati-
cally. Basically, the user has to write two functions, namely Map and Reduce. Map
takes a set of key/value pairs as input and produces a set of intermediate key/value
pairs. The system groups together all intermediate values belonging to the same
intermediate key and sends them to the Reduce function. For each intermediate
key the Reduce function receives all values corresponding to a given key and per-
forms a user-defined computation on them. The resulting key/value pairs are the
output of the program or can be passed to a different Map function as input.

The execution of the Map function is distributed across several machines by
automatically partitioning the input data. The Reduce function is also run in a
distributed way by R machines. Each map worker hashes its output set of interme-
diate key/value pairs into R groups and a special worker, i.e., the master notifies
the reduce workers about the locations of the data belonging to them.

MapReduce is a general purpose programming model which on one hand is a
clear advantage, while on the other hand in certain scenarios this generality may
have disadvantages as well. For example in the case of graphs algorithms, when the
algorithm is implemented as a sequence of Map/Reduce functions, often the whole
graph structure has to be passed from one Map/Reduce unit to the next. Since
the research of the networks has also become highly intensive in the last decade
Malewicz et al. in Google has developed another system, Pregel [11] to overcome
this shortcoming of MapReduce.

The input to a Pregel computation is a directed graph in which to each vertex
and edge a unique identifier and a modifiable user defined value is assigned. The
directed edges are associated with their source vertices and they also store the id
of their target vertex. The calculation consists of a sequence of iterations, called
supersteps. Within each superstep the vertices execute a user-defined function in
parallel. A vertex can modify its state as well as the state of its outgoing edges,
process the messages received in the previous superstep and send messages to other
vertices (not necessarily to their neighbours) that are to be received in the next
superstep. In addition it may change the topology of the graph. The computation
terminates when all vertices vote to halt. The output is the set of values returned
by the vertices [11].

In our experiments we compared the performance of the previous models to
each other and with the performance of the sequential approach. In our implemen-

114 P. Englert, M. Balassi, B. Kósa, A. Kiss



tations we used Hadoop [6] and Giraph [5] that are open source implementations
of MapReduce and Pregel respectively. We considered three different properties
of social networks, namely the number of the different triangles, the sizes of the
strongly connected components (SCC) and Linerank [7]. The algorithms calculat-
ing these measures represent three different families of algorithms. In the case of
the triangles for a node only its close neighbourhood should be taken into consid-
eration. In the case of the SCC’s at least in the sequential approach the graph
should be traversed in a depth-first search manner, which is difficult to parallelize.
Finally, Linerank can be computed by using an iterative matrix-vector multiplica-
tion. More details about Linerank, which was offered as a possible substitute for
betweenness, can be found in [7].

We ran our implementations on several generated and real-world networks of
different sizes ranging from 875, 713 nodes to 20 million. As expected, Giraph
outperformed Hadoop in all cases. In most of the time the sequential model also
performed better than Hadoop, which in the case of the Linerank is quite surprising
considering the fact that matrix-vector multiplication is considered to be effectively
implementable in Hadoop. For triangle counting however, Hadoop ran faster almost
in all cases. As we shall see in this case the Hadoop implementation accomplishes
only two Map/Reduce function pairs. Finally, for the graph with 20 million vertices
Giraph outperformed the sequential approach in all cases, which clearly indicates
that for larger graphs it is more beneficial to choose this model. Nevertheless, for
smaller graphs in most of the cases the sequential model conquered Giraph even
for Linerank whose implementation in Giraph seems to be quite effective again.

The paper is organized as follows. In Sections 2.1., 2.2. and 2.3. the algorithms
computing the number of triangles, finding the SSC’s and calculating Linerank are
sketched respectively. Then in Section 3. the experimental results are explained in
more detail. Finally, in Section 4. we conclude by summarizing our work.

2. The description of the algorithms

In this section we provide the detailed description of the three chosen algorithms
focusing on the differences between the sequential, Hadoop and Giraph implemen-
tations. As a result of the distributed frameworks the chosen graph representation
is the adjacency list.

2.1. The number of triangles

The high number of closed triangles is a well-known characteristic of a social net-
work thus providing this measure importance.

The naive sequential algorithm simply performs self-search bounded in depth
three from each node. This counts each triangle three times, to eliminate this
overhead it is a trivial improvement to utilize the ordering on node IDs to count
every triangle exactly once.

Efficiency issues of computing graph properties of social networks 115



The algorithm of the Giraph implementation is essentially the same, while dur-
ing the Hadoop implementation the structure of the graph needs to be passed
between the computation phases as shown in the following pseudo-code.

1: class BiDirectionMap
2: function Map(vertex v, neighbors [n1, n2, . . . nk])
3: for all vertex n ∈ neighbors do
4: function Emit(v, (n, out))
5: if ID(n) > ID(v) then
6: function Emit(n, (v, in))
7: end class

Figure 1: Pseudo-code of the first Map phase

2.2. The size of the strongly connected component

Finding the strongly connected components (SCCs) of a graph is a well-known
problem, and the resulting SCC decomposition has many applications in graph
analysis. [2] Additionally, SCCs are defined through reachability, which requires
traversal of the graph. Because of this, it requires algorithms that are fundamen-
tally different from, for example, the calculation of matrix-based centralities such
as Pagerank[13], or highly local algorithms like triangle counting.

Unfortunately, although multiple efficient sequential algorithms exist for the
calculation of the SCC decomposition, they are difficult to parallelize. In our se-
quential implementation, we calculate strongly connected components using a one-
pass path-based algorithm which runs in linear time. [4] Since this algorithm, like
other fast algorithms for finding strongly connected components, requires depth-
first search, it does not lead to an efficient parallel implementation. For this reason,
significantly different algorithms are used for the Hadoop and Giraph implementa-
tions.

A comprehensive survey on distributed algorithms for finding the SCCs of a
graph is given by Barnat el al. [2] Our Hadoop implementation is based on the
Colouring/Heads-off algorithm, which was originally introduced by McLendon et
al. [12]

Initially, each node is associated with a unique integer ID. Nodes send their ID
along their outgoing edges. If a node receives a smaller ID then its current one,
it adapts the smaller ID and propagates it. When no messages are sent, the first
phase ends, and each node now has the smallest original ID from the set of nodes
from which it is reachable. Nodes in the same SCC have the same ID, so edges
connecting nodes with different IDs are removed. We concentrate on the nodes
which retained their original ID. After reversing the edges, the nodes reachable
from such a node form one SCC. These components can be found using a similar
label propagation. The found components are output and removed from the graph.
This process is iterated until no nodes are left.

116 P. Englert, M. Balassi, B. Kósa, A. Kiss



The same algorithm was implemented both in Hadoop and in Giraph, with only
slight modifications due to the technical differences in the frameworks.

2.3. Linerank

Recently, a node centrality measure called Linerank was introduced as a possible
substitute for the computationally expensive betweenness centrality. [7] The score
of a node is calculated by aggregating the importance of its incident edges. The
importance of an edge is defined as the stationary probability of a random walk
with restarts visiting the edge. Besides its utility, this algorithm was chosen to be
implemented because it represents a broader class of distributed graph algorithms,
namely, matrix-vector multiplication based iterative algorithms.

To understand how Linerank works, let us first define line graphs. A line graph
L(G) of a graph G describes the adjacencies of its edges. Each node of L(G)
represents an edge of G. If G is directed, then L(G) is also directed, and there
is a directed edge in L(G) from e1 to e2 if and only if in G, the target of the
edge represented by e1 is the same as the source of the edge represented by e2.
Similarly, if G is undirected, then L(G) is also undirected, and e1 and e2 in L(G)
are adjacent if and only if there exists a node in G which is incident to both of
the corresponding edges. In Linerank, the importance of an edge is defined as its
Pagerank score in the line graph. This can be calculated using iterative matrix-
vector multiplication. [14] Based on the observation that the adjacency matrix of
the line graph is the product of the source and target incidence matrices of the
original graph, the computation can be sped up by using the two sparse n by e
incidence matrices instead of the potentially dense e by e adjacency matrix, where
n denotes the number of nodes and e is the number of edges in the original graph.

As the MapReduce implementation of the Pagerank algorithm has been de-
scribed many times before, [14] and the sequential implementation of the same
algorithm is straightforward, we omit their description here. The implementation
of the final step, i.e., summing the scores of the incident edges for each node, is
also straightforward.

However, the Giraph implementation of the PageRank calculation deserves an
explanation. First, we note that the PageRank score of edges with the same start-
ing vertex is equal. Since the random walk visits edges via nodes, the chance of
staying at an edge is proportional to the chance of arriving at its starting node.
Additionally, we are dealing with unweighted graphs, so each edge starting at a
particular node receives an equal share of this chance.

In the Giraph implementation, each node stores the chance of arriving at that
particular node. In an iteration step each node receives along its incoming edges the
probability that the random walker arrives to this node via the given edge. Then,
after summing, normalizing and dampening these values, the resulting probabilities
are propagated to the adjacent nodes along the outgoing edges. In the final step,
each node knows the stationary probabilities of its outgoing edges and receives the
stationary probabilities of its incoming edges, so it simply aggregates these and
outputs its own Linerank score. Convergence is kept track of by using Giraph

Efficiency issues of computing graph properties of social networks 117



aggregators. Each node calculates the change in probability for its outgoing edges.
The maximum is aggregated and if it is smaller than an ε constant, each node
outputs the results and votes to halt.

3. Experiments

Seq H-10 H-20 H-40 G-10 G-17
web-Google 9.061 3281.479 4058.652 5194.457 195.307 237.804
wiki-Talk 26.092 1024.194 1118.83 1490.222 102.129 113.963
soc-LiveJ 60.89 2343.39 2321.948 2834.056 218.258 205.136
forest10M 105.607 4568.531 4367.449 5242.808 289.995 280.08
forest20M 560.021 6699.063 5573.117 6302.713 758.745 381.896

(a)

Seq H-10 H-20 H-40 G-10 G-17
web-Google 14.51 124.58 162.25 150.27 52.10 51.70
wiki-Talk 913.36 631.83 575.86 563.32 103.05 105.29
soc-LiveJ 3138.28 2194.22 1880.25 1663.37 355.63 281.08
forest10M 336.40 176.13 168.37 151.55 66.56 52.45
forest20M 362.61 277.58 212.26 180.49 107.49 69.80

(b)

Seq H-10 H-20 H-40 G-10 G-17
web-Google 36.184 1755.529 2192.617 155.281 176.961 36.184
wiki-Talk 51.434 1463.529 915.685 145.097 155.601 51.434
soc-LiveJ 67.41 2764.598 2973.812 748.551 537.495 67.41
forest10M 315.21 1873.53 2064.873 250.466 235.531 315.21
forest20M 840.701 2618.853 2533.859 566.999 338.821 840.701

(c)

Figure 2: The computation times of the different implementations
on different graphs given in seconds. H-i and G-j respectively ab-
breviates Hadoop with i workers and Giraph with j workers. (a)
The strongly connected components. (b) The number of triangles.

(c) Linerank.

In our experiments we used three real-world networks, namely web-Google, wiki-
Talk and soc-LiveJournal. In web-Google (875, 713 nodes, 5, 105, 039 edges) vertices
represent web pages and directed edges represent edges between them [10]. In wiki-
Talk (2, 394, 385 nodes, 5, 021, 410 edges) vertices represent users and a directed
edge is added from user i to user j, if i had edited at least once a talk page of j [9].
Finally, in soc-LiveJ (4, 847, 571 nodes, 68, 993, 773 edges) vertices correspond for

118 P. Englert, M. Balassi, B. Kósa, A. Kiss



users and directed edges represent friendships [1]. Besides these networks, applying
a slight variation of the forest fire model [8] we generated two random graphs with
10, 20 million nodes and 24, 024, 725, 48097267 edges respectively. The generated
graphs of the original model do not contain any directed triangles, therefore for
each new edge that was to be added we kept its original direction with probability
0.7, reversed its direction with probability 0.1 and added two edges directed in both
ways with probability 0.21. In the tests each PC ran with 2Gb internal memory.
They either have 2 Dualcore I5 CPU with 3,2 GHz clock speed, or 1 Dualcore I5
CPU with 3 GHz clock speed.

The computation times can be found in Figure 2 measured in seconds. As
expected, Giraph outperforms Hadoop in all cases. In the case of the strongly
connected components the sequential approach always runs faster than Hadoop.
For the largest graph (with 20 million nodes) Giraph with 17 workers outperforms
the sequential implementation, otherwise the latter runs faster. For smaller graphs
Giraph-10 is faster than Giraph-17 owing to the increased cost of communication,
however, on larger graphs, since the level of parallelization is higher, Giraph-17
performs better. A similar statement can be made for Hadoop-10 and Hadoop-20.

In the case of the triangle counting Giraph outperforms the sequential approach
almost in all cases. In fact, for large graphs, there is an order of magnitude differ-
ence between the running times. Hadoop also performs better than the sequential
approach for even a graph with 2.3 million nodes. Remember that here the Hadoop
implementation accomplishes only two Map/Reduce function pairs, which explains
the relatively fast computation times.

Finally, for Linerank again, the sequential approach always outperforms Hadoop
by at least an order of magnitude. However, for graphs of 10 and 20 million nodes
Giraph becomes faster than the sequential model.

4. Conclusions

In our paper we considered three measures of social networks whose computing
methods belong to three different algorithm families. We implemented these meth-
ods in three different programming models, namely sequential, MapReduce and
Pregel, and compared their performances. Not surprisingly, Giraph outperformed
Hadoop in all cases. However, the sequential model also often ran faster than
Hadoop, which is a more striking result for the algorithm based on iterative matrix-
vector multiplication, since this operation is known to be effectively implementable
in Hadoop. Finally, for the largest graph with 20 million vertices Giraph outper-
formed the sequential approach in all cases, which clearly indicates that for bigger
graphs, it is more beneficial to choose this model in practically all scenarios.

1The forward and reverse burning probabilities were set to 0.37 and 0.2 respectively.

Efficiency issues of computing graph properties of social networks 119



References

[1] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group for-
mation in large social networks: Membership, growth, and evolution. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 44–54, 2006.

[2] Jiří Barnat, Jakub Chaloupka, and Jaco Van De Pol. Distributed algorithms for scc
decomposition. J. Log. and Comput., 21(1):23–44, feb 2011.

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, OSDI’04, pages 10–10, 2004.

[4] Harold N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents. Information Processing Letters, 74:2000, 2000.

[5] Giraph information. http://giraph.apache.org/.

[6] Hadoop information. http://hadoop.apache.org/.

[7] U Kang, Spiros Papadimitriou, Jimeng Sun, and Hanghang Tong. Centralities in
large networks: Algorithms and observations. In SDM, pages 119–130. SIAM /
Omnipress, 2011.

[8] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 631–636, 2006.

[9] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed networks in social
media. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1361–1370, 2010.

[10] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters, 2008. cite arxiv:0810.1355Comment: 66 pages, a much ex-
panded version of our WWW 2008 paper.

[11] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, SIGMOD ’10, pages 135–146, 2010.

[12] William McLendon III, Bruce Hendrickson, Steven J. Plimpton, and Lawrence
Rauchwerger. Finding strongly connected components in distributed graphs. Journal
of Parallel and Distributed Computing, 65(8):901–910, aug 2005.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. In Proceedings of the 7th International World Wide Web
Conference, pages 161–172, 1998.

[14] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999.

120 P. Englert, M. Balassi, B. Kósa, A. Kiss


