
Constant time median filtering of extra
large images using Hadoop

Mohammadreza Azodinia, Vahid Farrokhi, Andras Hajdu

University of Debrecen
m.r.azodinia@inf.unideb.hu

vahid.farrokhi@inf.unideb.hu
hajdu.andras@inf.unideb.hu

Abstract
The spatial resolution of remote sensing and medical images such as MRI,

CT and PET are constantly increasing and analyzing these images in real time
is a challenging task. But this limits the efficiency of many image processing
algorithms. Among different efficient image processing algorithms, median
filtering is a principal element in many image processing situations which
manages to reduce the noise while preserving the edges. Median Filtering
in Constant Time (MFCT) is a simple yet fastest median filtering algorithm
which can handle N-dimensional data in fields like medical imaging and as-
tronomy. With trend toward the median filtering of large images and pro-
portionally large kernels, Hadoop MapReduce (a popular big data processing
engine) can be applied and utilized. MapReduce provides the simplicity of
defining the map and reduce functions while the framework takes care of
parallelization and failover automatically.

Hence, in this paper we discuss on possibility of the incorporation of
MFCT algorithm with Hadoop MapReduce framework to improve the per-
formance of processing of extra large images.

Keywords: median filtering, MFCT, MapReduce, Hadoop, parallelization

MSC: 68-06, 68U10

1. Introduction

The daily growth of the amount and size of data generated by modern acquisition
devices is in a challenge with the processing capabilities of single devices. Consid-
ering the fact that processor architectures are reaching their physical limitations,
using distributed computing technologies would be the best and safest choice for
solving those problems that do not fit into the capability of a single machine. There-
fore, relating large-scale data processing, as a solution many approaches turned

Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, January 29–February 1, 2014. Vol. 1. pp. 93–101

doi: 10.14794/ICAI.9.2014.1.93

93



towards distributed computing by combining many single computers and let them
interact through different interfaces. An example is the MapReduce framework.

Generally, the term large data refers to two types of data. In the first case
it refers to very large image e.g. a microscopic image which is roughly hundred
thousand pixels into hundred thousand pixels. What makes them challenging is the
fact that they do not fit into the memory. The second scenario happens when we
are dealing with very large data sets of regular images which cannot be processed
on a single personal computer fast enough. The need for an advance computing
approach such as MapReduce emerges as the CPUs’ architecture are facing their
physical limitation caused by excessive growing size of data and limited capacity
of a single machine.

In this paper we discuss about our motivations and new approach for filtering a
large image using commodity computers for distributed processing. The challenge
is to process a large image with a constant time median filter algorithm utilizing
MapReduce framework and its open source implementation, Hadoop.

The rest of the paper is organized as follows. In section 2 we discuss briefly the
background and section 3 presents our approach for filtering a large image using
Hadoop in a constant time. Section 4 concludes this work.

2. Background

2.1. Median Filtering

The median filter is a fundamental image processing algorithm which provides
a mechanism to remove image’s salt and pepper noise while preserves the edges
of the image. More advanced image filters like morphological operations, rank-
order processing, and unsharp masking as well as many higher-level applications
like speech and writing recognition, object segmentation, and medical imaging are
different variations on the median filter [1]. However, the usefulness of the median
filter has long been hampered by its high computational cost and its non-linearity.

The median filtering algorithms are distinguished one from each other with the
sorting algorithm that each of them use. During median filter implementation all
pixel values are sorted and the value which is placed at (n2/2)-th position is selected
as the median, where n is the filter size (i.e. the size of one side of the square filter
window). If we use Quicksort, the computational complexity of filter is O(n2 log n)
operations per pixel. However, if Quickselect is used, instead of full sort, it results
in computational complexity of O(n2). The necessity of recalculating everything
from scratch for each window position is considered as the major drawback of this
approach. In order to address this problem, search trees can be used accordingly
where we reuse previous window position’s sorting result. Therefore just n obsolete
pixels are removed and n new pixels are added to it as shown in Figure 1 where
self-balancing binary search trees’ addition/subtraction is done in average O(log n)
and selecting the median in constant O(1) time and the overall average complexity
would be O(n log n) per pixel.

94 M. Azodinia, V. Farrokhi, A. Hajdu



In [2] Gil and Werman improved the aforementioned approach by using an
Implicit Offline Balanced Binary Search Tree Based data structure and reduced the
computational complexity to O(log2 n). Moreover completely different approach
popped up where Huang et al [3] achieved the computational complexity O(n).
They proposed counting of gray values in the kernel utilizing a 256-bin histogram.
Median calculation is then done by successive summing of individual bins.

Figure 1: 2r + 1 pixels must be added to and subtracted when
moving from one pixel to the next. In this figure, r = 2. [4]

Weiss proposed an improvement [5] for Huang’s algorithm by utilizing the dis-
tributive property of histograms in which he proposed processing several image
rows simultaneously and on the other hand maintaining a set of partial histograms
instead of using only one. Consequently for all rows which are processed at the same
time, same set of partial histograms is used where the overall computation com-
plexity becomes O(log n). Although the achieved computation complexity could be
considered as close to constant time approach but still lacked of being independent
of kernel radius size.

Finally in 2007 the first roughly O(1) average case complexity was proposed by
Perreault and Hébert [6] in which for each column of the horizontally moving kernel
they used separate histograms. The column histograms are saved and updated
recursively. The window histogram is created by summing of corresponding bins
of column histograms. The subtraction of the out of scope column histogram of
the running window and addition of the histogram for the newly added column
will update the window histogram as shown in Figure 1. The proposed algorithm
is bit-depth dependant and is independent of the kernel radius n. It achieves O(1)
average case complexity of images of 8-bit utilizing SIMD extensions of modern
CPUs.

Alekseychuk in 2012 proposed another constant time median filtering algorithm
[4] by combining the ideas of search tree with histogram based approaches of [5]
and [6]. This algorithm utilizes a hierarchical data structure in order to store value
occurrences in specific value intervals. Being capable of processing higher precision
data (high bit-depth data) as well as the platforms that are lacking hardware SIMD
extensions, motivated us to find the latter algorithm the fastest median filter which
can be easily extended to N-dimensional images and supports usual higher-level
parallelization of the algorithm. Based on the mentioned reasons, selecting this

Constant time median filtering of extra large images using Hadoop 95



algorithm in fact helps us during the processing of the large images in parallel
environment.

2.2. MapReduce and Hadoop frameworks

Considering large image, it is always critical utilizing a model of distributed com-
puting to solve image processing tasks. One might be asking what the alternatives
are. On a single PC Batch processing is feasible for only small amounts of image,
and since our image is very large, the fact is that only a part of this image fits into
memory. On the other hand due to slow hard drive access the speed of computation
will drastically decrease. Therefore an alternative is a must.

One approach is treating the problem like a traditional large-scale computing
task e.g. cluster computers built on GPUs which requires high level parallel pro-
gramming along with specialized hardware and complex parallel programming. It
is interesting to know whether a computer cluster as a solution for many kinds of
problems can be tackled with simpler and cheaper systems without much decrease
in efficiency. This issue is inspired us to the utilization of both Google MapReduce
and Apache Hadoop.

Tackling this issue, assigning the batch process to several computers at the same
time is a solution, but of course at the cost of creating a need for job monitoring,
mechanisms for data distribution. Besides there should exist a means to ensure that
the processing completes even when some computers experience failures during the
task execution. This is exactly the problem that both Google MapReduce and
Apache Hadoop were designed to solve; scalability and fault tolerance.

MapReduce is a programming model developed by Google for processing and
generating large datasets used in practice for many real-world tasks [7] as shown
in Figure 2. In MapReduce concept the developer’s task is to define only two
functions, Map and Reduce functions, while everything else is handled by the im-
plementation of the model. Extra parameters and functionalities of MapReduce
are provided to fine-tune the system in order to help the model to conform to the
assigned task better. The MapReduce computation consists of reading the input
from disk and converts it to Key-Value pairs. Then map function processes each
pair separately and outputs the results as any number of Key-Value pairs. For
each distinct key, the Reduce function processes all Key-Value pairs with that a
Key and returns any number of Key-Value pairs. Once all input pairs have been
processed, the output of the Reduce function is then written to disk as Key-Value
pairs.

Hadoop is an open-source framework for distributed computing, written in Java
and developed by the Apache Foundation and inspired by Google’s MapReduce [8].
On one hand being used by many companies such as Facebook and Yahoo in order
to analyze large-scale data tasks and on the other hand being easily adapted for
use with any kind of hardware ranging from a single computer to large data center,
Hadoop is the best candidate for image processing on the MapReduce model.

There are many approaches where Hadoop framework shows its distinction
rather than other distributed computing frameworks. Lv Zhenhua et al. [9] de-

96 M. Azodinia, V. Farrokhi, A. Hajdu



Figure 2: MapReduce architecture

scribed how to find out different elements of satellite images based on their color us-
ing MapReduce approach aiming at separating trees from buildings. They claimed
that non-parallel approach could not process those images more than 1000× 1000
pixels. So they aimed to process those images utilizing MapReduce. Kocakulak
and Temizel [10] compared a large dataset of images against an unknown image by
using Hadoop and MapReduce. They proposed a correlation method to compare
the library of images with the unknown image. Li et al. [11] proposed a parallel
clustering algorithm with Hadoop and MapReduce in order to compensate the high
running time taken in the execution of clustering algorithms of a large number of
satellite images. They achieved the results by clustering each pixel with its nearest
cluster and in then based on every pixel in one cluster set they calculated all the
new cluster centers. Golpayegani and Halem [12] implemented a gridding of Aqua
satellite images collected by AIRS instruments by utilizing a Hadoop MapReduce
framework parallel approach to process these images. Mohamed H. Almeer [13]
tested eight different image processing algorithms on top of the Hadoop environ-
ment of 112-core high-performance cloud computing system. The results show that
using a Hadoop MapReduce approach provides us with a scalable and efficient pos-
sibility in processing multiple large images used for large-scale image processing
applications. He also justifies his approach by showing the difference between the
single PC runtime and the Hadoop runtime.

All aforementioned approaches motivated us to use MapReduce and Hadoop
in which the parallel algorithm conducted by MapReduce yields superiority rather
than an implementation on a single machine. However, it is noticeable that by uti-
lizing higher performance hardware the superiority of the MapReduce algorithm
would be reflected better. So using MapReduce approach as a parallel environ-
ment and higher performance hardware is strongly suggested in large scale image
processing tasks.

Constant time median filtering of extra large images using Hadoop 97



3. Proposed approach

In this section we propose a novel approach which enables us to process large
images using median filter with Hadoop utilization. One challenge is to choosing an
appropriate median filtering algorithm with the aim towards achieving the fastest
one. Another challenge is to adapt the images which are expected to be processes
using median filter on top of Hadoop. Finally adapting the chosen median filter
along with the input data to be run in parallel on Hadoop is the novel proposed
method.

There are two different nodes in Hadoop MapReduce phase to be responsible
for Map and Reduce functions’ execution: JobNode and TaskNode. The JobNode
is the manager in Hadoop MapReduce and takes care of task designation to the
computing nodes. Task node is responsible for task execution process. While
the task execution is processing JobNode keeps updating the JobNode about the
operation status so in case the TaskNode is damaged, the JobNode will be informed
and will reassign the task to another idle TaskNode to process the task.

Hadoop cluster owns a distributed file system which is called Hadoop Dis-
tributed File System (HDFS). It is inspired by the Google File System and it
provides a fault-tolerant storage structure capable of holding large amounts of
data and allow for fast information retrieval [14]. In the same scenario, the HDFS
phase consists of NameNode and DataNode. Name node plays the manager role
and is responsible for managing and keeping track of the data in the system. It
does not save the data itself but notifies the MapReduce of the storage location of
the data. The responsibility of the DataNode is to store the data and keeps the
NameNode updated of the data’s location.

In our Hadoop execution approach, as shown in Figure 3, the InputFormat
interface [8] is responsible to define how and where from the map function reads
the input data. When user uploads the large image, InputFormat interface defines
InputSplits which aims at splitting the input into smaller chunks (the size of each
chunk varies between 16 MB to 64 MB and depends on the programming design)
where HDFS distributes and stores them on the computing nodes.

In order to manage these smaller input chunks, Hadoop benefits from Recor-
dReader class in order to provide data access mechanisms for map function. It
reads the input chunk from the HDFS and converts it into key-value pairs. Recor-
dReader is iterated over all input splits as far as all the input splits have been
converted and prepared to be consumed by map function [15].

Next step is to perform the constant time median filter’s MapReduce job in
parallel on the split chunks. Each chunk of input will be assigned to each map
function where the constant time median filter task will be applied to each input
chunk. According to the discussed and selected median algorithm [4], each node
creates interval-occurrence tree (IOT) of the image chunk and the median of each
pixel is selected irrespective to the size of the sliding window in constant time.
Then the filtered chunk, intermediate results, is stored in the local storage of HDFS
for the further access and consequently the TaskTracker which is residing at the

98 M. Azodinia, V. Farrokhi, A. Hajdu



Figure 3: Constant time median filtering of large images

DataNode updates the JobTracker about the completion of the job.

The reducer function of the constant time median filter fetches the output
key-value pairs which are having the same key and merges then to construct the
final output (filtered image). In order to group the output key-value pairs with
the same key, intermediate results must be shuffled over the network. In order
to minimize the time consuming shuffling process Hadoop users benefit from an
optional optimization option this is called Combiner. As soon as the Reduce phase
is finished its output, which are the filtered chunks, would be written back to HDFS
which enables the user to retrieve the resulting filtered image. At the final step,
all processed chunks will be juxtaposed and construct the large-filtered image.

Constant time median filtering of extra large images using Hadoop 99



4. Conclusion

The aim behind using MapReduce (Hadoop) is to process large amount of data
and provide to the user with the results in the minimum time. Many researchers
have used Hadoop framework for the applications which requires lower computing
complexity and higher speed. In this paper, we proposed a new approach by using
Hadoop implementation, where Map function is in charge of constant time median
filtering execution and Reduce function is assigned to combine the intermediate
data which is processed at the Map phase and creating the final filtered large image.
The MapReduce model implemented by Hadoop is a logical option to be utilized to
solve these processing issues as it is freely available and provides a reliable platform
for parallelizing computation and does not have any requirements with regard to
specialized hardware or software. Although Hadoop is able to read wide variety
of input formats like text, binary, database and etc through FileInputformat class,
it still limits in some cases where there is no way to directly operate some image
formats on Hadoop. For handling such cases, one option is to change the form of
the image e.g. changing the form of tif format images into text. The proposed
approach can play an important role in denoising large remote sensing and medical
images such as satellite images and high resolution microscopic images as well as
any situation in which denoising a very large image is of a need. Our future aim is
to achieve more image processing tasks of large images in the cloud infrastructure
utilizing Hadoop framework.

References

[1] P. Maragos and R. W. Schafer, “Morphological Filters - Part 2: Their Relations to
Median , Order-Statistic , and Stack Filters,” IEEE Trans. onAcoustics Speech Signal
Process., vol. 35, no. 8, pp. 1170 – 1184, 1987.

[2] J. Gil and M. Werman, “Computing 2-Dimensional Min , Median and Max Filters,”
IEEE Trans. image Process. a Publ. IEEE Signal Process. Soc. Anal. Mach. Intell.,
vol. 15, no. 5, pp. 504 – 507, 1996.

[3] T. Huang, G. Yang, and G. Tang, “A Fast Two-Dimensional Median Filtering Al-
gorithm,” IEEE Trans. onAcoustics, Speech Signal Process. Speech Signal Process.,
vol. 27, no. 1, pp. 13 – 18, 1979.

[4] A. Alekseychuk, “Hierarchical Recursive Running Median,” in IEEE International
Conference on Image Processing (ICIP), 2012 19th, 2012, pp. 109 – 112.

[5] B. Weiss, “Fast median and bilateral filtering,” in ACM SIGGRAPH 2006 Papers
(SIGGRAPH ’06), 2006, vol. 1, no. 212, pp. 519–526.

[6] S. Perreault and P. Hébert, “Median filtering in constant time,” IEEE Trans. Image
Process., vol. 16, no. 9, pp. 2389–2394, Sep. 2007.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clus-
ters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[8] T. White, Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

100 M. Azodinia, V. Farrokhi, A. Hajdu



[9] Z. Lv, Y. Hu, H. Zhong, and J. Wu, “Parallel K-Means Clustering of Remote Sensing
Images Based on MapReduce,” in Proceeding WISM’10 Proceedings of the 2010
international conference on Web information systems and mining, 2010, pp. 162–170.

[10] H. Kocakulak and T. T. Temizel, “A Hadoop solution for ballistic image analysis
and recognition.pdf,” in High Performance Computing and Simulation (HPCS), 2011
International Conference on, 2011, pp. 836 – 842.

[11] B. Li, H. Zhao, and Z. Lv, “Parallel ISODATA Clustering of Remote Sensing Images
Based on MapReduce,” in Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2010 International Conference on, 2010, pp. 380 – 383.

[12] N. Golpayegani and M. Halem, “Cloud Computing for Satellite Data Processing
on High End Compute Clusters,” in Cloud Computing, 2009. CLOUD ’09. IEEE
International Conference on, 2009, pp. 88 – 92.

[13] M. H. Almeer, “Cloud Hadoop Map Reduce For Remote Sensing Image Analysis,” J.
Emerg. Trends Comput. Inf. Sci., vol. 3, no. 4, pp. 637–644, 2012.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” ACM SIGOPS
Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, Dec. 2003.

[15] J. Venner, Pro Hadoop (Expert’s Voice in Open Source). Apress, 2009.

Constant time median filtering of extra large images using Hadoop 101


