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Abstract

A ventilation and cooling service firm posed the problem to develop a
computational system for detecting certain types of machinery failure based
on regularly collected sensor data. In this paper, we present this industrial
sample classification problem, the structure and operation of the developed
solution including the basic theoretical background. In addition, we discuss
the possibilities of reducing the number of monitoring devices with an accept-
able loss of detection rate. The test results of our technique and its future
applicability are also presented in detail.
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1. Introduction

Nowadays, due to the general market conditions and the ever increasing competi-
tion, industrial companies are pushed more than ever to optimize their operational
costs, and improve the product and service related business processes. In addition
to the regular requirements, service continuity and availability are also expected.
Maintaining a high level quality requires the detection of occasional failures of the
included service elements as soon as possible. Consequently, the automatization
of this aspect of support could be essential to minimize the time, personnel, and
financial costs in a company’s everyday life.

A local service company, which maintains and installs ventilation and cooling
systems for a wide range of customers, including hospitals, office buildings, and
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private homes too, asked us to develop a computer system for failure detection
purposes in cooperation with the engineering department of our institute.

Considering the operation of cooling and ventilation systems, one may see or
even hear that malfunctions affect and alter the normal vibration caused by the
moving parts, mainly the engine and the fans, therefore it is a sound way to monitor
such systems by motion sensors. These regularly measure the vibration over a fixed-
length of time interval in terms of signed one dimensional acceleration. The moving
parts work on specific frequency which means that the collected data of each sensor
is a periodic one dimensional time series, or signal in other words.

Our task is the classification of the current condition of the monitored system
based on the information of the last measurement using predefined malfunction
classes. This is a supervised learning problem called sample classification, therefore
we need to design and implement a feature extraction method and a classifier in
order to create a solution.

2. Feature extraction

The first step in a classification process is to extract relevant distinctive information
from the raw data. This information form is called a feature vector or sample which
has to be unique and characteristic to every single class.

Periodic signals are studied by frequency analysis. It is based on the theorem
that every periodic signal can be created by summing up sinusoids with the ap-
propriate frequency and amplitude. Theoretically, an infinite number of different
sinusoids should be required to perfectly recreate a complex signal in most cases.
In practice, we only determine the frequency and amplitude of a finite number of
sinusoids. While the former could be accomplished by Fourier Transformation, the
latter is executed by Discrete Fourier Transformation, or DFT in abbreviation, a
realizable finite version of the theoretic technique.

(a) The raw acceleration data. (b) The Discrete Fourier
Transformed data.

Figure 1: Illustration of frequency analysis.

Discrete Fourier Transformation calculates the amplitude of these sinusoids with
a frequency from a specific range whose lower bound is zero, while its upper bound
and the number of the sinusoids in the result depend on the parameters of the
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input data, namely the length and the sampling rate in case of time series. For
detailed information about frequency analysis see [2]. The output of the DFT is
called the frequency decomposition of the studied signal. From now on, we will call
its elements as the components of the signal. We will also refer the amplitude and
the frequency of a component as the value and the place of it.

We use the DFT of every time series in the monitoring data to compose a
sample. First and foremost, let us have a look over some of these decompositions
from the reference, corresponding to the normal operation, and every malfunction
class to get a basic picture of the overall problem. Recommended by the engineer
colleagues, we narrow down the study to the frequency range between 20 Hz and
200 Hz. One may have two conclusions immediately. First, the decompositions
in this interval have only a few dominant components, whose value is relatively
high compared to the others. Second, there are remarkable differences between the
dominant components of different classes: a component can be dominant in one
class while completely insignificant in another one, or its place or value is slightly,
but recognisably, changing from class to class.

(a) Loose engine belt. (b) Torn engine belt. (c) Reference operation.

Figure 2: Discrete Fourier Transformations of engine belt problems.

In order to create a feature vector, which reflects the observations above, we
adaptively mark out intervals as regions of interest around the dominant frequen-
cies. These intervals are disjoint and also varying in width. Their actual position
depend entirely on our previous manual study of the decompositions. Instead of our
human instinct, some sort of machine learning algorithm can be used to determine
the intervals.

In each interval, we simply choose the place and the value of the most dominant
component to be features. We could use more sophisticated characteristics, like the
energy, but these ones turned out to be the most reliable ones according to our
experience. Eight to ten intervals on average, two feature elements in each, proved
to be sufficient for classification.

3. Classification

The samples are classified by neural networks. They mimic the structure and op-
eration of the human nerve system. A network consists of neurons arranged into
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layers. The classical artificial neurons are individual computational units which
calculate the weighted summation of the values they are given, and return a pre-
defined function of it. In a feed-forward network constructed for classification, one
gives the sample, containing numerical data, to the neurons of the first or input
layer. When the computation is done, their output is passed to another layer whose
neurons repeat this process. This data flow continues through subsequent layers
until it reaches the final, output layer in which every neuron belongs to a class.
The output of a neuron is the membership of the sample in the represented class.
The intermediate layers are called hidden layers, because we cannot interact with
them directly.

Input layer Hidden layer Output layer
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Figure 3: Illustration of the operation and structure of a neural
network for classification.

Networks are configured to a specific classification task through the weights of
the neurons. This configuration process is called the training of a network. We
used back propagation, a common training method. It is an iterative algorithm
whose point is that we use the network to classify samples for which we know
what should be the correct output. We compare the network actual output to the
expected one and based on its error we modify the weights in such a way that
repeating the calculations with the same samples would result in less error. This
process is iterated until the error of the classification is acceptable or does not
improve significantly (or at all). You can read more about neural networks and
classification in [1].

Our classifier networks use two hidden layers beside the input and the output
one. We initialize the weights by the Nguyen-Widrow method which generates
values uniformly from a defined interval and transforms them to obtain a steep,
Gaussian like distribution. During training, the weight modifications are made
according to the scaled conjugate gradient algorithm. It performs better than
the other alternatives especially when we do not have prior information about
the proper parametrization. We experienced that the performance of the network
depended heavily on the initialization, therefore training multiple networks and
using the best one is advisable. Considering the training as a global optimization
task, the main difficulty of this problem is probably the large number of local
optima in the space of allowed weight settings.
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4. Results

We tested our detection technique implemented in MATLAB [3] on a real ventila-
tion and cooling system designed for larger buildings like state offices. The entire
system has four vital components, two ventilation fans and two condensers, sep-
arated from each other either in the operation and the location, thus we monitor
them accordingly.

Malfunction Class Malfunction Class
A bit loose engine belts 1 Very loose engine belts 2
One torn engine belt 3 Two torn engine belts 4
Loose drive fastening 5 Loose Fixation 6
Imbalanced device 7 Half-sealed shutters 8
Totally sealed shutters 9 Stuffed outer calorifer 10
Loose fan structure element 11 Jammed shutters 12
Worn bearings 13 Normal (reference) operation 14

Table 1: Error classes of the supply ventilation fan.

In the following, we present the results in part with the most complex context,
the supply ventilation fan. Table 1. shows the 13 possible malfunctions we have to
detect. These problems mainly concern the belts of the fan driving engine, the fan
itself, the shutters, and the bearings.

10 sensors grouped into sets of size 2 and 3 composed the monitoring hard-
ware. Sensors in the same group were positioned close to each other but directed
orthogonally. First, assessing the capabilities of the elaborated detection method,
we use the data of only one sensor, or all of them at a time. Table 2. shows the
results. As it might be expected, a single sensor is far not enough to detect all
of the malfunctions. Surprisingly, even the combined data of the ten sensors is
not sufficient to achieve a 90% detection rate at least in certain cases. Possibly,
we have not repeated the training enough times, and the best weights we found
correspond to a rather worse local optimum. Another reason is that we are dealing
with overlapping classes, and we have reached our limits.

On Figure 2. you can notice that a loose engine belt can look very similar to the
normal operation. It is difficult to separate these two classes with a hyperplane. It
is up to us what extent of loosing should be considered a problem. The development
of some malfunctions is transitional and not instantaneous.

The industrial partner was curious about the possible reduction of the moni-
toring hardware to cut costs. Table 2. contains some results of the research on
this question. However, the overall rate of correct classification improves, if we use
an entire sensor group instead of only one element from it, there is obviously some
redundancy in the provided information. Examining the best combinations of sen-
sors or sensor pairs from every group, significant improvements can be experienced,
however even the most excelling set (1,3,5,6,7,9) is far behind the performance of
using every sensor, therefore the modification of the monitoring hardware is not
recommended.

Finally, if we treat the classes affecting the same part of the machinery as a
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1 2 3 4 5 6 7 8 9 10 4,5,6 9,10 1,3,5 1-106,7,9
1 0 84 80 68 46 100 72 76 62 60 88 56 100 100
2 60 75 73 85 74 68 75 74 66 76 89 81 87 85
3 56 64 74 98 78 14 74 58 66 66 94 88 100 98
4 100 84 82 98 100 100 100 100 100 100 98 100 98 100
5 40 74 82 50 86 88 84 72 62 48 100 92 100 100
6 49 60 51 60 62 67 67 75 64 64 82 70 90 91
7 69 76 79 57 71 67 65 66 77 79 79 77 89 85
8 42 62 46 78 50 72 64 58 60 82 96 76 68 100
9 84 70 38 80 98 84 94 90 86 74 98 96 98 100
10 59 52 79 54 58 65 64 45 57 65 73 57 77 96
11 48 62 12 26 30 0 48 68 62 68 42 42 54 74
12 64 64 52 62 67 55 70 49 66 48 74 83 84 91
13 83 74 67 81 82 86 84 72 91 91 97 91 88 92
14 77 70 83 68 76 71 70 73 75 80 77 65 85 85

Table 2: Classification success rates in percents. Rows denote the
classes while columns are representing the sensors used for detec-

tion.

single class, and we work with every sensor, the results are more than satisfying,
having at least 93% success rate in every class, which proves that the shady class
borders did cause our problems.

5. Conclusion
We have developed an analyzing technique which is capable of detecting specific
malfunctions of ventilation and cooling systems. We have tested it on actually
working machinery with success.

This classification works properly, although its applicability fully depends on
the type of the fan driving engine. The studied system operates on a fixed frequency
which makes the frequency decomposition possible. Lately, more and more systems
are available in the market whose engine’s frequency changes over time to fit the
also changing performance requirements. They do not have a persistent frequency
profile which renders our system inapplicable.

Lastly, we would like to mention that we have successfully integrated this tech-
nique into a fully automatic monitoring system prototype with even better success
in which the determination of the frequency intervals and the construction of the
neural network are also programmed.
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