
Upgrading the ICT curriculum of a
multidisciplinary degree evolving from

practical orientation to university
integration

Kris Aerts

KU Leuven@KHLim
Kris.Aerts@kuleuven.be

Abstract

In Flanders, Belgium the master degree of industrial engineering has just
been integrated into the universities, imposing a shift from a more practical
point of view to a tighter relation between (applied) research and education.
A similar process is taking place in several European countries. This paper
tells the success story of how to upgrade the ICT component of the program
while maintaining both the success rate and the satisfaction of students.

As always, the challenge is set by the context. The multidisciplinary
character of our degree where Electronics/ICT is just one of 6 options after a
common base of 94 credit points results in many small courses – typically just
3 credit points – and a friction between students disliking ICT and a thorough
preparation for consecutive ICT courses in the major Electronics/ICT.

The paper presents several design choices throughout the 4 year program,
such as the compromise between objects first and algorithms first in the first
course involving a tiny bit of VBA in Excel and a focus on Java; early exposure
to MVC and other design principles; and the integration of our research in
the master courses by gradually exposing it to the students, from a voluntary
topic in a course with capita selecta, over master thesises to a devoted course
open to every student. This helped us in formulating our research topic more
precisely, especially for newcomers to the subject.

The paper also presents a BlueJ extension which enables students to au-
tonomously evaluate their adherence to international coding standards and
the use of Javadoc.

Finally, our counter-motto is “Modest expectations give modest results”.
We always try to challenge students by giving assignments they love working
on and that can make them proud of their achievements. Our ultimate reward
is the proud sparkle in the eye of students, e.g. presenting their own Java

Proceedings of the 9th International Conference on Applied Informatics
Eger, Hungary, January 29–February 1, 2014. Vol. 1. pp. 269–278

doi: 10.14794/ICAI.9.2014.1.269

269



program with animations, threads and MVC after just 6 credit points of
programming.

Keywords: multidisciplinary ICT education, research integration, Java, BlueJ

MSC: 68-00, 68-01, 68N15

1. Context

Europe is a diverse continent where, despite the European Union, countries can
still decide autonomously on a lot of issues, reflecting the diverse history of each of
the participating countries and the fact that Europe started as a economic union.
On the other side of the spectrum we have language – a very noticeable difference
– and education, where countries have their own legislation, habits and history,
with an origin often long before the advent of the European Union. For example
in Belgium and France it is still mostly based on the Napoleon system, but many
other systems exist. [1, 2]

In the 80’s and beginning of the 90’s Belgium had a ternary system:

• HOBU - KT: an acronym for higher education outside university - short
type, where the addition of short type indicated a 3 year program (in the
70’s sometimes also 2 years for some degrees)

• HOBU - LT: again outside university but of the long type: typically 4 year
programs. These programs are comparable to university degrees in a number
of countries. It was written in law that these programs are of “academic
level”. However, because they were not physically part of a university, there
were often not recognised as such outside Belgium.

• University: is of course university as we know it.

In an effort to align the structure of higher education all over Europe and to
improve the international recognition of the different degrees, the Bologna decla-
ration of 1991 [3, 4, 5] imposed a binary division between bachelor and master
degrees.

Belgium did this by moving the second bullet (HOBU - LT) to the third bullet
(university) as these degrees were already of academic level, and by rebranding the
first bullet to professional bachelor where the addition of “professional” reflects the
fact that the degrees are directly targeted at a profession, where students of the
other bachelors (of bullet 2 and 3) are supposed to continue with their masters at
their academic institution. Hence the labelling “academic”.

However, despite the fact that it easy to explain, the process to perform was
far from trivial, for a number of reasons. The only reason relevant for this paper
is the fact that this implied a sort of upgrade for the curriculum, mostly in the
form of integrating research into the curriculum. We took the maximalist approach
and didn’t stop by adding some research results but actually reformed the entire
ICT-trajectory of the curriculum with a distinct focus on software engineering.

270 K. Aerts



We hope that the ideas and critical design decisions presented in this paper
may be of interest to anyone involved in similar processes such as country wide
educational reforms, technical universities integrating into (research) universities
or individual institutions seeking to advance in IT or to integrate more research
into their programs.

1.1. Joint Faculty of Engineering Technology

Figure 1 shows the 7 campuses where our programme for BSc and MSc in Industrial
Sciences is offered1 After a broad, multi-disciplinary common base in the first 3
semesters the students have to choose their specialisation. where Electronics/ICT
is only one of 9 options. This may make the comparison with other degrees a bit
more difficult because ICT is typically either a main component of the programme
or only a ’tool’ to achieve something in another course – in the best case for
programming or scripting, but often only by configuration or employing skills in
the particular tool.

Figure 1: Geographical overview of campuses

In our curriculum it is neither: 6 of the 90 credit points in the common base
have been allotted to ICT. This is little compared to specialised ICT degrees but
we believe (and will show) that it is enough to give a thorough understanding of
the design techniques used in developing software and insight in the complexity of
making and maintaining software.

1Actually, this paper is specific for the programme in Diepenbeek/Hasselt only, where it is
taught in the Joint Faculty of Engineering Technology of KU Leuven and UHasselt, with some
deviations from the general program.

Upgrading the ICT curriculum of a multidisciplinary degree evolving . . . 271



However, the fact that the first 3 semester are common for all 9 options, puts
some stress on the ’freedom to operate’ in (at least) 3 ways:

• there is always friction between students (and colleagues alike) how may
complain that <fill in the blank> is not useful for their education and that
they’d rather learn netiquette or how to make nice graphs in Excel on the one
hand and collegues from the major who expect you to go as deep as possible
in preparation for their major

• being attractive as in ’attracting more students for your major’ is never an
explicit goal, but always implicitly present

• courses are scattered and divided in small units. A typical ICT-course, es-
pecially in the first 3-4 semesters, is typically 3 credits, worth for up to 90
hours of student effort. So courses are expected to consist of small but self
contained packages with little room for diversion and side stories. However,
we try to provide ’cliff hangers’ to the next course and/or our major.

2. The real challenge

Table 1: Demands for an updated ICT programme

272 K. Aerts



3. Vision on education

Reflecting our origin as a practically oriented, yet open-ended education, we prefer
competences over pure theoretical knowledge, e.g. instead of giving an overview of
all design patterns with a written exam about the patterns, we’d rather have them
study a few patterns in depth including designing and building an application.

This small example already covers out three main motto’s: focus, the analogy
with a drivers license and putting the stakes high, which are omnipresent through-
out all our courses.

3.1. Focus
A striking feature of our programme is that an ICT course typically contains 3 or
4 credit points, corresponding to an expected student effort of between 80 and 105
hours, which consists of following and preparing lectures, executing tasks, studying
for and doing exams. This is relatively small compared to most courses at other
institutions. Partially this is a consequence of our multi-disciplinary programme,
but it is also an explicit choice: by having only relatively small courses, both
tutors and students must keep focus. One must carefully design courses with only
the most relevant topics: there is little time for long introductions and sideways.
The actual learning outcome must be clearly identified. Students benefit from
this: one the hand it gives them more easily the impression that the course is
manageable, resulting in a higher motivation. On the other hand because we focus
on a limited set of design methodologies per course and let the students explore
them thoroughly, they become well acquainted with them. This is the typical motto
of less is more. They may know less topics but understand them more in depth.
We believe that picking up other methodologies then becomes more easy because
they have had good experiences applying well known and generally approved ones,
and are open to learning others.

However, despite the fact that we focus, we make sure that every course has
open ends. There are always features mentioned but at most partially explored.
The projects assigned to the students have an open scope: for example the fea-
tures requested are described more and more vaguely as students progress in the
curriculum. The good students are encouraged to go further (and often do so).

3.2. Analogy with a drivers license
Using anecdotes to explain something is a well known rhetorical technique. For
our ICT courses we use the drivers license. Despite the fact that some have to
try harder, practically everybody has a drivers license. We persuade our students
that the same applies for our courses. While for some students the course may
seem trivial, others have to struggle more, some even a lot, but perseverance helps.
Practicing is the only solution. Just like no one even considers driving all night
long just before the drivers license test, studying all night long before a software
engineering exam is of no use.

Upgrading the ICT curriculum of a multidisciplinary degree evolving . . . 273



3.3. Putting the stakes high

Although we have focus, we are not modest in our expectations. We carefully re-
spect the counter-motto: “Modest expectations give modest results”.The end result
is always something students cannot reach (too) easily. After going through a phase
of frustration they reach a level of exaltation and deliver a product of which they
are genuinely proud.

We expect commitment and show commitment by giving extensive guidance,
quick responses to emails and thinking along with their design decisions. But we
expect results as well. This is also a facet of putting the stakes high at both sides.

By putting the stakes high and rewarding them properly we combine the typical
external stimulus (the credit cannot be earnt without spending enough time) with
intrinsic motivation: students loving to work on the subject and becoming proud
of their deliverable, also giving great satisfaction to the tutors.

4. CS1 and CS2 courses

The CS1 and CS2 courses, each having 3 credit points, are for most students
the only software engineering component in their programme. The final learning
outcome is hands on experience with one of the most fundamental architectural
patterns in software engineering: model-view-controller. This gives them a good
understanding of the complexity involved in developing software and insights in
how applying architectural patterns helps in solving problems.

In CS1 the focus is on object oriented programming. In the continuous struggle
between objects first versus algorithms first we fulfil our Belgian role of making
compromise by first having one credit point of ’algorithms first’ in VBA in the
comfortable environment of Excel, before switching to our main focus of objects
first in Java. The focus in VBA is not on the features of Excel, but on functional
decomposition, variables, parameters and control structures (if, for, while). A short
assignment helped in increasing the initially very low points.

The Java part really stresses object orientation. We proceed from composition
to arraylists and introduce inheritance, citing the Liskov substitution principle (one
of the rare cases where we drop a name to stress the importance of the concept)
to arrive at lists containing different types of objects. Javadoc is another focus of
attention as it shows the fact that classes are to be used by other people, and as
it is a concept that is applicable in other fields engineering where processes and
connections must be well documented. We use BlueJ, the pedagogical programming
environment created by the university of Kent [6].

The knowledge of Java and object orientation is expanded in CS2 and accumu-
lates in students building a self chosen graphical application in Java (most select a
mini-game, but this is not compulsory) using the model view architectural pattern.
Extra techniques introduced include inheritance through interface, threads, double
buffering. Study time measurement has shown that the average load is 31 hours
per credit point, where the target is between 25 and 30 hours per credit point,

274 K. Aerts



indicating that the programme is ambitious, but reachable. The overall score of
the student evaluation of the course was very high as well, with a top rating of 92.

5. BlueJ Extension for self evaluation

The previous sections already introduced the tension between giving a lot of feed-
back to students to help them in reaching a higher level on the one hand and the
inclination to cost efficiency on the other hand. One approach to solve this conflict
is to give more power to the students. The more they can evaluate their programs
autonomously, the more effective the time spent on feedback.

Luckily, two important evaluation criteria, compliance to international coding
standards (camelCase, getters & setters, . . . ) [6] and the use of Javadoc can be
semi-automatically evaluated. For this purpose we have developed a BlueJ-plugin
Self evaluation, which checks

• for camel case (in names exceeding a certain length)

• whether instance variables have a getter and setter method

• the presence of javadoc, including @param and @return

• the absence of public instance variables

• common mistakes such as = instead of == and in String comparison ==
instead of .equals()

Figure 2: Evaluation of a Java class

The result of evaluation is a percentage where students should try to get 100
Because each of the ’errors’ can be intentional, programmers can add the

@Intentional-annotation to assist the extension in calculating the appropriate score.

Upgrading the ICT curriculum of a multidisciplinary degree evolving . . . 275



6. General suggestions

From the lessons learnt we would like to make some suggestions to anyone changing
their curriculum. Although revolution may be suitable in some situations, we find
it undesirable, perhaps even infeasible to upgrade an entire curriculum at once.
Different, consecutive courses have to be aligned and it is better to stabilise the first
courses before proceeding with the next courses at the risk of having to backtrack.

Therefore we suggest to proceed stepwise. We have obtained very good results
by working both at the head (CS1 and CS2 courses) and the tail (master courses).
By setting a solid base in the introductory courses, and not beginning too soft,
students are getting acquainted with high standards. Even when follow up courses
do not (yet) meet the same standards, students are used to work hard for ICT
courses and will continue to do so.

It may be a good idea to work on the master courses in parallel with the
beginners courses. Students are a bit more mature and can in most cases cope
with some additional complexity, certainly when the context of integrating into the
university (in our case) is explained to the students. However the change should
not be too harsh. As explained in the following sections, we gradually integrated
our research in the master course.

Afterwards, when both head and tail have been more or less stabilised, the effort
can shift from the beginning courses to the intermediate courses. In our programme
we introduced courses on Database-programming and Cloud computing & service
oriented architectures, but this depends on the profile of the degree.

7. Integrating research

The possibilities to integrate your own research into the curriculum depend heavily
on the subject of the research, the institute and the actual programme for the
degree. Our approach is particularly interesting because the research topic: using
Lava [ref] to generate constrained cryptographic hardware by applying design space
exploration [7, 8] is not directly suitable for our type of students, both in style and
in content.

However, paying respect to tradition, integration succeeded well by following
a step by step approach in the master course “capita selecta”. In this course we
introduced an explicit open end: a joker/trump/bonus theme, where students can
pick a theme and kind of double their points on this theme (if they perform will in
the extra question and/or assignment). This was an excellent opportunity to let
the eager students do limited experiments with the research topic.

The actual steps performed were

• Introduce functional programming as a topic (necessary to be able to under-
stand Lava)

• Encourage (better) students to take Lava as a joker

276 K. Aerts



• Let a student ‘massage’ the subject in his master thesis

• Introduce Lava as a topic, and do some more ‘massaging’

• Make a full course dedicated to the topic

Both the experiments by a broader group and the massaging by a smaller group
were vital in preparation for the full course offered to every student. It also helped
us in formulating our research topic more precisely, especially for newcomers to the
subject.

8. Conclusion

This paper presented a number of design decisions in reforming the ICT-component
of a multi-disciplinary master degree in Engineering Technology. Essentials keys
in the success of the new program are focus through relative small but ambitious
courses with a well defined learning outcome, emphasis on competences and project
work through assignments and a wide spread belief in putting the stakes high.

References

[1] Dearing ROn, editor, Setting the context of higher education in Europe Retrieved
from http://www.leeds.ac.uk/educol/ncihe/r11_065.htm at May 8, 2014 (1997)

[2] Neave, Guy, The Bologna declaration: Some of the historic dilemmas posed by the re-
construction of the community in Europe’s systems of higher education., Educational
Policy 17.1 (2003), 141–164.

[3] Schwarz, Stefanie, and Don F. Westerheijden, eds. Accreditation and evaluation in
the European higher education area. Dordrecht: Kluwer Academic (2004).

[4] Declaration, Bologna. The European higher education area. Joint declaration of the
European Ministers of Education 19 (1999).

[5] van der Wende, Marijk C. The Bologna Declaration: Enhancing the transparency
and competitiveness of European higher education. Higher education in Europe 25.3
(2000), 305–310.

[6] Kölling, Michael, et al., The BlueJ system and its pedagogy., Computer Science
Education 13.4 (2003), 249–268.

[7] Wolfs, D., Aerts, K., Moelans, J., Mentens, N., Design automation for cryptographic
hardware using functional languages, In Proceedings of the 32nd WIC Symposium
on Information Theory in the Benelux, (2011), 194–201.

[8] Wolfs, Davy; Aerts, Kris; Mentens, Nele, Design space exploration for automati-
cally generated cryptographic hardware using functional languages, In: Field Pro-
grammable Logic and Applications (FPL), 2012 22nd International Conference on.
IEEE, (2012), 671–674.

[9] WILLIAMS, Laurie, et al, In support of pair programming in the introductory com-
puter science course, Computer Science Education, (2002), 12.3: 197–212.

Upgrading the ICT curriculum of a multidisciplinary degree evolving . . . 277



[10] KAY, Judy, et al., Problem-based learning for foundation computer science courses.
Computer Science Education, (2000), 10.2: 109–128.

[11] Fincher, Sally, and Marian Petre, eds, Computer science education research, CRC
Press, (2004), 239 pages.

278 K. Aerts


