A Logical Approach to Program Verification

Tudor Jebelean

Research Institute for Symbolic Computation
Johannes Kepler University, Linz, Austria

We approach the generation of the verification conditions for the total cor-
rectness of both functional as well as imperative programs in a purely logical
manner: The conditions must ensure the existance and uniqueness of the func-
tion implemented by the program.

We assume that the program is based on an existing logical object theory
which contains the properties of the objects used in the program (integers, ra-
tionals, tuples, etc.). When a new function is implemented, then its specification
(input and output conditions) are added to the theory, together with the respec-
tive (new!) function symbol. Note that, since the program is using formulae and
terms from this theory, no translation of these is necessary.

Functional programs are just syntactic versions of the logical formulae which
constitute the implicit (because of recursion) definition of the function imple-
mented by the program. Imperative programs are meta-terms containing the
usual imperative programming constructs. We use a natural and simple trans-
formation of imperative programs into functional programs, thus defining their
semantics. This transformation as well as the generation of the verification con-
ditions are fully formalized in predicat logic as meta-level functions. They use
forward symbolic execution: the values of the current variables are computed
symbolically, and the branching statements generate various path conditions.

There are three kinds of verification conditions: for coherence, for functional
correctness, and for termination. The coherence conditions insure that actual
arguments of each function call fulfill the input condition of that function. The
functional conditions insure that the output of the program fulfills the output
condition of the function. The termination conditions are certain induction prin-
ciples built according to the structure of the recursive calls (respectively of the
iterative loops). The termination conditions, together with the coherence condi-
tions, allow to construct the proof (at object levell) of the formula stating the
existence and uniqueness of the function implemented by the program. Together
with the functional conditions, they also allow to prove the total correctness.

Our meta-model does not include a special abstract environment for defin-
ing the behaviour of programs, but everything is based on the logical approach
described above. We can prove at meta-level that the necessity and sufficience
of the conditions. This facilitates a future automated approach to the correct-
ness proof of the verification conditions generator, and possibly a self-reflective
approach (since the generator is also a program).



