DesynchLRU: An Efficient Page Replacement Algorithm with Desynchronized Cache and RAM

Md. Raqibul Hasan1, 2 and M. Sohel Rahman1, 3
1Computer Science and Engineering Department

Bangladesh University of Engineering and Technology

Dhaka-1000, Bangladesh

http://www.buet.ac.bd/cse

3Algorithm Design Group

Department of Computer Science

King's College London, Strand, London WC2R 2LS, England

http://www.dcs.kcl.ac.uk/adg

2raqib_cse@yahoo.com, 3sohel@dcs.kcl.ac.uk

Extended Abstract

In this paper, we present DesynchLRU, a new page replacement algorithm. DesynchLRU is a modified version of the celebrated LRU (Least Recently Used) page replacement algorithm. The basic distinction between LRU and DesynchLRU is that, in the former, the pages in cache and RAM always remain synchronized, whereas, in the latter, they can be desynchronized. Here, we show that the page fault rate in DesynchLRU is always smaller than that of LRU.

In LRU, the set of pages in cache is a subset of pages in the main memory. So, if a page is in the cache, then it will also be in the main memory, i.e., the main memory and the cache is always synchronized with each other. In DesynchLRU, the set of pages in cache may not be a subset of pages in main memory i.e. if a page is in cache its copy may not be in the main memory. Therefore, the cache and the main memory will be desynchronized. An important issue with respect to the page replacement algorithms is to decide what will be the cache block and main memory page size? If they are of different size (say two block is equal to one page), then for a block in cache we have to keep track of its main memory page number and block number in that page. Moreover complexity will arise for cache writeback. So, in many systems, cache block and memory page are of equal size to keep memory management task simple. Here, as well, we shall consider system with cache block and memory page of equal size.

The main idea of DesynchLRU is as follows. When selecting a page from main memory (RAM) for eviction, DesynchLRU tries to select a page whose copy is present in cache. If such a page is not available then it uses LRU algorithm. If cache page fault occurs, then a page from cache must be replaced. In case of LRU, we have to write back the page in the main memory only if the selected page is dirty; the writeback is not needed if the page is not dirty. But in DesynchLRU, the image of the selected page may not be present in the main memory. So, it may need to select a page from main memory for eviction to writeback the page selected from cache irrespective of whether it is dirty or not.

Assume that there are k, m and n pages, respectively, in the cache, RAM and the disk. In case of LRU, the probability that a virtual page is in cache or RAM is m/n. This follows from the fact that in LRU, Cache is synchronized with RAM. So, probability of page fault in LRU is 1-m/n. In case of DesynchLRU, the probability that a virtual page is in cache or RAM is (m+k)/n. Now, recall that in this case, Cache is not synchronized with RAM anymore. Therefore, probability of page fault in DesynchLRU is 1-(m+k)/n. Clearly, 1-(m+k)/n < 1-m/n and hence the result imply that the page fault rate in DesynchLRU is always smaller than that of LRU.

� Currently scholar at Corvinus University of Budapest under the frame of eLink project, funded by the European Commission, Erasmus Mundus External Cooperation Window, 19674-EM-1-2008-UK-ERASMUSMUNDUS

