
8 th International Conference on Applied Informatics
Eger, Hungary, January 27–30, 2010.

Slicing Erlang programs∗

István Bozó, Melinda Tóth, Zoltán Horváth

Department of Programming Languages and Compilers,
Eötvös Loránd University, Budapest, Hungary

e-mail: {bozo_i,toth_m,hz}@inf.elte.hu

Abstract
Program slicing is the most well-known approach in impact analysis when

the programmer tries to detect those program components which are affected
by a change. Measuring the impact of a change by detecting those pro-
gram parts which are affected by a source code transformation could help
to reduce the number of test cases must be performed during a regression
test. Considering that regression testing is the most expensive part of a soft-
ware development cycle and during the lifetime of a software product certain
changes could be often performed on its source code, reducing the number
of test cases with impact analysis could be an elemental part of software
development.

This paper focuses on programs written in Erlang. Erlang is a dynamic
functional programming language, where most of the program bugs can not
be detected in compile time, just in run-time, thus testing after a source code
transformation is necessary. Testing Erlang programs with property based
testing using QuickCheck properties is popular in the industry. Thus we focus
on selecting QuickCheck properties using Erlang program slicing. The paper
gives the definition of the Control Flow Graph (CFG) of Erlang programs,
the definition of Erlang program slices and the program slicing mechanism
using the CFG and the Erlang Behaviour Dependency Graph. When the
resulting program slice does not contain a property, the impact of the change
does not affect it, thus it is not necessary to retest the property during the
regression testing.

References

[1] M. Weiser., Program slices: Formal, psychological, and practical investigations of
an automatic program abstraction method. PhD thesis, University of Michigan, Ann
Arbor, MI, 1979.

[2] M. Harman, D. W. Binkley, and S. Danicic., Amorphous program slicing. Jour-
nal of Systems and Software, 68(1):45-64, Oct. 2003.

∗Supported by TECH_08_A2-SZOMIN08, ELTE IKKK, and Ericsson Hungary

1



2

[3] M. Harman and S. Danicic., Amorphous program slicing. In5th IEEE International
Workshop on Program Comprenhesion (IWPC-97), pages 70-79, Dearborn, Michigan,
USA, May 1997. IEEE

[4] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Á. Kiss, and L. Ouarbya.,
Formalizing executable dynamic and forward slicing. In Proceedings of the 4th IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM 2004),
pages 43-52, Chicago, Illinois, USA, September 15-16, 2004. IEEE Computer Society

[5] B. Korel and J. Laski., Dynamic program slicing. Information Processing Letters,
29(3):155-163, October 1988.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren., The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages and
Systems, 9(3):319-349, July 1987.

[7] S. Horwitz, T. Reps, and D. Binkley., Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):3546,
January 1990.

[8] H. Agrawal and J. Horgan., Dynamic program slicing. In Proceedings of the ACM
SIGPLAN ’90 Conference, 1990.

[9] K. Ottenstein and L. Ottenstein., The program dependence graph in software
development environments. In Proceedings of the ACM SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environments, pages
177.


