
A Domain Specific Language for DSP

Karina Bunyik, Gergely Dévai, Zoltán Gera, Zsolt Gyulavári, Zoltán Horváth,
Kálmán Karch, Krisztián Markó, Gyula Nagy, Emese Palkó, Endre Sajó, Máté Tejfel

Supported by Ericsson and the

Swedish Foundation for Strategic Research.

The goal is a high level language that allows compact and easy to understand definition
of algorithms and has precise semantics. It has to be completely hardware platform
independent so that it may later be recognized as a standard.

The targeted application area of the language are DSP algorithms like speech- and video
codecs, (de)modulators etc. A clear C interface will be defined so that source code written
in the high level language can easily fit to existing code in C and use the services of DSP
libraries.

The language will be based on two programming paradigms: dataflow descriptions and
functional programming. On an abstract level, DSP algorithms are usually described as
data flow computations and we plan to combine this technique with the clarity and high
abstraction level of functional programming.

A motivating example is Lava, an embedded language in Haskell for hardware
description and verification. Simple circuits are described in a functional style and they
are combined using connection patterns (combinators) which are in fact higher order
functions combining circuits according to a given scheme (eg. sequential or parallel
composition). We expect that similar combinators will be useful also in the current
language as they raise the level of abstraction.

An other related language is Cryptol, a domain specific language for cryptography.
Cryptol faces a problem similar to ours: algorithms need to be described in an abstract
way and then transformed to platform-dependent, optimized implementations. Although
Cryptol is constructed for a different domain, it may inspire our language design.

In the first phase of the development, the language will be embedded in Haskell, a pure,
lazy functional language. We use Haskell because it includes a wide range of language
constructs that make embedding convenient. By embedding the language we get the
frontend of the compiler (scanner, parser, typechecking) for free. This is especially
advantageous in the design phase when the language definition is supposed to change very
often.

Once the language definition is fixed, we will implement a standalone compiler. This
will make it possible to adjust compile errors to the semantics of the language (instead of
Haskell semantics) and provide additional tool support.

Digital signal processing (DSP) algorithms are usually designed and described on an
abstract level and than transformed to a DSP chip specific C code by expert
programmers. The problem is that the gap between the abstract description and the
platform dependent code is huge and even the C code optimized for two different chips
differ a lot. This makes it expensive to rewrite the algorithms each time a new chip is
targeted.

The DSL4DSP project is being carried out by Ericsson, ELTE University (Budapest)
and Chalmers University (Göteborg, Sweden). The goal of the project is to develop a
high level domain specific language designed for digital signal processing algorithms
and to implement a prototype compiler and related tools (eg. debugger) for the
language.

 We expect that a high level domain specific language will make the implementation
of algorithms easier and a compiler together with platform-specific code generator and
optimizer modules will take the burden of target dependent low level programming off
the programmers.

The main requirement against the compiler is that the efficiency of the generated C
code and hand crafted code has to be comparable. In order to accomplish this
requirement, we have to take into account all the special features mentioned about the
DSP chip architectures and build heavy optimization into the compiler.

We plan to compile functions according to strict semantics. Lazy semantics would
require closures created dynamically in memory and some kind of garbage collection.
These are too expensive techniques on the targeted platform. For the same reasons we
will avoid higher order functions by extensive inlining.

Optimization techniques fall into two categories: platform dependent and platform
independent techniques. Therefore we split compilation into two phases. The result of
the first phase is an abstract representation of a general purpose imperative code where
platform independent optimizations are already applied. The second phase receives an
abstract hardware description as additional input and generates C code with annotations
to guide the optimization process of the chip-specific C compiler. The abstract hardware
description includes information for example on the number of cores in the chip, the
length of its pipeline, and the DSP library to use.

We plan to generate human readable C code for two reasons. Optimization
techniques of C compilers are constructed for human written code and we would like to
get valuable feedback from domain expert C programmers about the generated code.

Introduction

Department of Programming Languages and Compilers
Eötvös Loránd University, Budapest

DSP Architectures

Language Design

When generating code we have to take into account that the code will run mainly on DSP
chips and FPGAs. In the first phase of the development we will concentrate on DSPs.

These chips usually have several cores that may be specialized for different tasks (eg.
arithmetic operations, memory management etc.). This means that this architecture is
implicitly parallel and we have to generate C code that allows the chip specific C compiler
to identify the instructions that can run in parallel.

DSP chips are heavily using pipeline technology. There are several stages to prepare
instructions for execution and then to execute them. This implies that passing the control
flow (jumps, functions calls) is relatively expensive on these architectures.

Caching both code and data is an important feature of these platforms. That is why
optimal implementations of DSP algorithms generally use arrays and simple loops.
Dynamic memory management and linked data structures are usually present only in the
programs that control the DSP algorithms and not in the algorithms themselves.

Compiler Construction

http://dsl4dsp.inf.elte.hu

Mary Sheeran, Emil Axelsson

Computer Science and Engineering Dept.
Chalmers University of Technology, Göteborg

András Vajda, Peter Brauer,
Bo Lyckegård, Arto Mahkonen,

Anders Persson, Henrik Sahlin, Anders Wass

Ericsson

In cooperation with ELTE IKKK.

	Dia 1

