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0. Introduction No’

approaches to mathematics:
e cxistential theorems
e constructive proofs
e symbolic algorithms
the approach we take determines

e what we consider to be a satisfactory mathematical
result and

e which problems we work on



1. Parametrization of curves W

tacnode curve implicit:

flz,y) =
20 — 3%y + 9yt — 28 + 2 =0

tacnode curve parametric:
_ 3 —612+9¢t—2
2(t) = 5= Top ra02 3379

o 24t 14
y(t) = 2111665+ 4012—321+9




existential theorem:

Theorem: ' An irreducible algebraic curve C is ra-
tional if and only if the genus of C is 0.

Lef. Sendra/W./Perez-Diaz, “Rational Algebraic Curves”, Springer (2008), Theorems
4.11 and 4.63



constructive proof:

derive degree bound for parametrization:

Theorem: (SWP Thm.4.21)
Let C be defined by f(x,y) =0, and P(t) = (x1(t), x2(t))
a proper parametrization of C. Then

deg(P(t)) = max{deg,([),deg,(f)}
and  deg(x1(t)) = deg,(f), deg(xa(t)) = deg,(f).



Ansatz:
(1)

™Y+ agg
Crin XY™ =+ -+ - Coo

bmnxmyn + o bOO
coy(t) = ———
CmndY =+ -+ Coo

plug ansatz into implicit equation f(z,y) = 0 and solve
the corresponding system of algebraic equations

this is possible in principle, but not in practice



symbolic algorithm:

e determine singularities and genus of the curve C, and
decide parametrizability

e determine a system of adjoint curves h(x,y,t) of di-
mension 1; this involves finding a regular point on C
with coefficients in an optimal field

e determine the common factor of f(z,y) and h(x,y,t)
depending on ¢ by resultant computation; this yields
rational expressions for the coordinates of the “mov-
ing” intersection point, which correpond to a para-
metrization

2cf. Sendra/W./Perez-Diaz, “Rational Algebraic Curves”, Springer (2008), Theorems
4.11 and 4.63



Example: cardioid curve C

defining polynomial

flz,y) =
(22 + 4y +y?)? — 16(2* +y?)




e the cardioid has a double point at the origin
O = (0,0)
and two more complex double points at infinity
Po=(1:%::0).

So the genus of C is

1
5 B2 -3.2:1 =0

and therefore C has a rational parametrization



e C hat the regular point

Now we consider adjoint curves of degree 2;

i.e. conics passing through all the singular points and
also through the regular point Q;

the defining polynomial for this 1-dimensional system
of adjoints is

h(z,y,t) = ta* + ty* + = + Sty
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e Now we determine the intersection points of the car-
dioid and the system of adjoints:
the factors of res,(fo(z,y), h(z,y,t)) are

23, (256t + 32t2 4+ 1)z + 1024¢°
the factors of res,(fo(x, y), h(z,y,t)) are

g , y+8,  (256t1 + 32t + 1)y + (20481 — 128¢2)

So we have found a rational parametrization of C,
namely

—1024¢3 —2048¢* 4+ 128¢2
(t)

_ t _
weires 1 YT mearsme
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2. Algebraic equations and e
syzygies

syzygy problem:

fi,..., fs polynomials in x1, ..., x, over the field K

determine all solutions (in K|x1,...,x,]) 21,...,2s of
the equation
Jizi+ o+ fozg =0

solutions are called syzygies of fi,..., fs
these solutions (z1, ..., zs) form a submodule Syz( f;) of
Klxy,...,x,]" over K|xy,. .., x,]

can be generalized to a system of equations

12



existential theorem:

Theorem: (D. Hilbert * ) The module Syz(f;) has a
finite basis; so there are syzygies

s.t. every syzygy z can be written as

zZ = alz(l) +oee Tt akz(k)

for some polynomials aq, . .., ay.
(also for system of equations)

3cf. D.Hilbert, Uber die Theorie der algebraischen Formen, Math. Annalen 36, 473-534
(1890); Kap. I, p.208
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constructive proof:
from the school of Emmy Noether:

Theorem: (Grete Hermann 4 )

Let q be the maximal degree of any f;.

Then the module Syz(f;) has a finite basis, the ele-
ments of which all satisfy the double exponential de-

gree bound
n—1
21
r=1

(also for system of equations)

4cf. G.Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomide-
ale, Math. Annalen 95, 736-788 (1926); Satz 2
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symbolic algorithm: °

o let ' = (fla" '7fS)T;
determine a Grobner basis G = (gi,..., g for

the ideal (F'), and transformation matrices A, B s.t.
G=A-Fand F=DB-G

e then from reductions of the S-polynomials of G to 0
we get a basis for Syz(G), which we can write as the
rows of a matrix R

e then the rows of @) form a basis for Syz(F):
I,—B-A

5cf. F.Winkler, Polynomial Algorithms in Computer Algebra, Springer-Verlag Wien
New York (1996), Chap. 8

15



Example: Consider the linear equation
:L'z—xy2—4x2—i
(21,22,23) . y2z+2x+% =0 ,
2z 4y’ +
P
where the coefficients are in Q[x, y, z]. Basis for Syz(F):

1 1
(y*z + 2z + 5 T + oy’ +42? + =, 0)

4
1 1
(a:22+y2+§x, 0, —a:z+xy2+4x2—|—1)
g, 1o 3 1o 3, 2 2 4 S 9
(" + —zy” — 22° — —2*, —x’y” —xy” —4da” — —z7,
2 2 4
1 1
xy4+4x2y2—|—1y2—|—2x2—|—§x)

1 1
(0, 2%z +y* + 5% —y’y — 20 — 5)
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syzygies play an essential role in resolution of ideals and
modules

for a commutative ring R,

e.g. polynomial ring R = K|xy, ..., x,],
and a module M over R,

a free resolution of M is:

D R P2 RSP RS %0 N 5 ()

where all these maps are linear and im(p;,1) = ker(ip;)
everywhere.

Free resolutions for submodules of K[z, ..., z,|"™ can be
computed by Grobner bases.
Hilbert (1890) has shown that such resolutions are always
finite and not longer than m.

17



. . 7
3. Equational logic 4

the problem:
given:

e a term algebra 7 (X, V') over a signature 3
and variables V'

o F = {s; =1t;|i € I} a set of equations over T
generating an equational theory =p

e cquivalence relation s =gt <= s=1¢c=p

decide:

e decide: “s=pt’ "
for s,t € T(X,V)

18



existential theorem:

this is a problem in predicate logic and as such semide-
cidable
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symbolic algorithm:
(also applicable for the computation of Grébner bases)

define a reduction relation on 7 (X, V') by orienting the
equations

c; . S; — tl'
in one of the ways (according to a reduction ordering)

r; . Si—>ti or ti—>8i

(w.lo.g. assume r; : s; — t;.
This leads to a so-called “rewrite rule system (RRS)”

RI{Ti‘iEI}

20



The reduction — 5 works in the following way: if there
is a substitution o such that o(s;) = w, then any term
containing v as a subterm can be reduced to the corre-
sponding term, where u is replaced by o(t;):

U—pRU — dp,i,0 0 up = o(s;), and
v=ulp—o(t)] .

In general the termination property is undecidabel for
rewrite rule systems. But there are several sufficient con-
ditions; e.g. s; > t; w.r.t. a reduction ordering. For
the following let us assume that the rules can be ordered
w.r.t. such a reduction ordering.

21



then — 5 has the following properties:

e —p is terminating (if, e.g., the rules are ordered
w.r.t. a reduction ordering)

.<—>E::E

but — 5 in general is not Church-Rosser:

22



let G consist of the axioms of group theory
G=4{(1 1-xz=n=x,
(2) 7tz =1,
3) (x-y)-z=x-(y-2) }
which are oriented (lexicographic path ordering with
1> . > 1) to give the rewrite rule system

R={1) 12—z
2) 2712 — 1,
3) (@-y)-z—wx-(y-2) }
then

1

T (xy) —m (@)

)y —e Ly —a) Y
both results are irreducible,

they are congruent modulo =g,
but they have no common successor
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The goal is to transform the RRS R into an equivalent
R

which has the Church-Rosser property

As in the previous cases (Gauss elimination, Euclidean
algorithm, Grobner bases) we investigate “smallest” sit-
uations in which a term can be reduced in essentially 2

different ways

e we look at terms which can be reduced w.r.t. two
different rules r; : s; — t;, ;155 — 1

e this means that there is a most general unifier (sub-
stitution) o s.t.

o(sj) = o(si)p

for some position p

24



if

a(si)p = als;)
then
o(s;) =u
Lo

ofti)  olsi)lp —o(t))]
these reduction results are obviously equal modulo =g;
so are normal forms vy, v9 to which they can be reduced.
If v1 # vy, then we try to orient them into a new rule
which will not violate the termination property

25



if this process terminates and yields a set of rules R then

x o . *
O%R__E_<—>R

o — s both Noetherian and CR

So we can decide the equality modulo E by reduction
w.rt. R

in the end we can interreduce the elements in R and so
get a minimal set of rewrite rules for =

26



for the example of group theory this means that be-
cause of

1

T (1Y) ) (z!

x) -y ——o) Loy —a) Y

we add the new rule

@at(zy — y

27



for group theory this Knuth-Bendix process ¢ actually
terminates and yields the following minimal rewrite rule

system:
1 -2 — x,
2 r o — 1,
3 (z )z—>x-(y-2),
4) a7t (zy) —y,
r-1l—x

11—>1

( —1

-~ O
&
ﬁ

© oo

X
T (a7 -y)—>y,

(2 -
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()
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S
<
~

6D.E. Knuth, P.B. Bendix, Simple word problems in universal algebra, in J. Leech (ed.),
Computational Problems in Abstract Algebra, Pergamon Press (1970)
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. 2\,
Conclusion N’

symbolic computation

is not so much a subfield of mathematics/computer sci-
ence,

but a particular way of looking at mathematical prob-
lems. a

philosophy of mathematics

29



Thank you !
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