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0. Introduction

approaches to mathematics:

• existential theorems

• constructive proofs

• symbolic algorithms

the approach we take determines

• what we consider to be a satisfactory mathematical

result and

• which problems we work on
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1. Parametrization of curves
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tacnode curve implicit:

f(x, y) =

2x4 − 3x2y + y4 − 2y3 + y2 = 0

tacnode curve parametric:

x(t) = t3−6t2+9t−2
2t4−16t3+40t2−32t+9

,

y(t) = t2−4t+4
2t4−16t3+40t2−32t+9
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existential theorem:

Theorem: 1 An irreducible algebraic curve C is ra-

tional if and only if the genus of C is 0.

1cf. Sendra/W./Perez-Diaz, “Rational Algebraic Curves”, Springer (2008), Theorems
4.11 and 4.63
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constructive proof:

derive degree bound for parametrization:

Theorem: (SWP Thm.4.21)

Let C be defined by f(x, y) = 0, and P(t) = (χ1(t), χ2(t))

a proper parametrization of C. Then

deg(P(t)) = max{degx(f), degy(f)}

and deg(χ1(t)) = degy(f), deg(χ2(t)) = degx(f).
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Ansatz:

x(t) =
amnx

myn + · · · a00

cmnxmyn + · · · c00
, y(t) =

bmnx
myn + · · · b00

cmnxmyn + · · · c00

plug ansatz into implicit equation f(x, y) = 0 and solve

the corresponding system of algebraic equations

this is possible in principle, but not in practice
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symbolic algorithm: 2

• determine singularities and genus of the curve C, and

decide parametrizability

• determine a system of adjoint curves h(x, y, t) of di-

mension 1; this involves finding a regular point on C

with coefficients in an optimal field

• determine the common factor of f(x, y) and h(x, y, t)

depending on t by resultant computation; this yields

rational expressions for the coordinates of the “mov-

ing” intersection point, which correpond to a para-

metrization

2cf. Sendra/W./Perez-Diaz, “Rational Algebraic Curves”, Springer (2008), Theorems
4.11 and 4.63
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Example: cardioid curve C
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x defining polynomial

f(x, y) =

(x2 +4y + y2)2− 16(x2 + y2)
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• the cardioid has a double point at the origin

O = (0, 0)

and two more complex double points at infinity

P1,2 = (1 : ±i : 0).

So the genus of C is

1

2
· [3 · 2 − 3 · 2 · 1] = 0

and therefore C has a rational parametrization
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• C hat the regular point

Q = (0,−8)

Now we consider adjoint curves of degree 2;

i.e. conics passing through all the singular points and

also through the regular point Q;

the defining polynomial for this 1-dimensional system

of adjoints is

h(x, y, t) = tx2 + ty2 + x + 8ty
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• Now we determine the intersection points of the car-

dioid and the system of adjoints:

the factors of resy(f2(x, y), h(x, y, t)) are

x3, (256t4 + 32t2 + 1)x + 1024t3

the factors of resx(f2(x, y), h(x, y, t)) are

y2, y + 8, (256t4 + 32t2 + 1)y + (2048t4− 128t2)

So we have found a rational parametrization of C,

namely

x(t) =
−1024t3

256t4 + 32t2 + 1
, y(t) =

−2048t4 + 128t2

256t4 + 32t2 + 1
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2. Algebraic equations and
syzygies

syzygy problem:

f1, . . . , fs polynomials in x1, . . . , xn over the field K

determine all solutions (in K[x1, . . . , xn]) z1, . . . , zs of

the equation

f1z1 + · · · + fszs = 0

solutions are called syzygies of f1, . . . , fs

these solutions (z1, . . . , zs) form a submodule Syz(fi) of

K[x1, . . . , xn]s over K[x1, . . . , xn]

can be generalized to a system of equations
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existential theorem:

Theorem: (D. Hilbert 3 ) The module Syz(fi) has a

finite basis; so there are syzygies

z(1) = (z
(1)
1 , . . . , z

(1)
s ) ,

...

z(k) = (z
(k)
1 , . . . , z

(k)
s ) ,

s.t. every syzygy z can be written as

z = a1z
(1) + · · · + akz

(k)

for some polynomials a1, . . . , ak.

(also for system of equations)

3cf. D.Hilbert, Über die Theorie der algebraischen Formen, Math. Annalen 36, 473–534
(1890); Kap. I, p.208
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constructive proof:

from the school of Emmy Noether:

Theorem: (Grete Hermann 4 )

Let q be the maximal degree of any fi.

Then the module Syz(fi) has a finite basis, the ele-

ments of which all satisfy the double exponential de-

gree bound
n−1∑

r=1

q2r

.

(also for system of equations)

4cf. G.Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomide-

ale, Math. Annalen 95, 736–788 (1926); Satz 2
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symbolic algorithm: 5

• let F = (f1, . . . , fs)
T ;

determine a Gröbner basis G = (g1, . . . , gt)
T for

the ideal 〈F 〉, and transformation matrices A, B s.t.

G = A · F and F = B ·G

• then from reductions of the S-polynomials of G to 0

we get a basis for Syz(G), which we can write as the

rows of a matrix R

• then the rows of Q form a basis for Syz(F ):

Q =





Is − B ·A

· · · · · ·

R · A





5cf. F.Winkler, Polynomial Algorithms in Computer Algebra, Springer-Verlag Wien
New York (1996), Chap. 8
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Example: Consider the linear equation

(z1, z2, z3) ·





xz − xy2 − 4x2 − 1
4

y2z + 2x + 1
2

x2z + y2 + 1
2
x





︸ ︷︷ ︸
F

= 0 ,

where the coefficients are in Q[x, y, z]. Basis for Syz(F ):

(y2z + 2x +
1

2
, −xz + xy2 + 4x2 +

1

4
, 0)

(x2z + y2 +
1

2
x, 0, −xz + xy2 + 4x2 +

1

4
)

(y4 +
1

2
xy2− 2x3−

1

2
x2, −x3y2− xy2− 4x4−

3

4
x2,

xy4 + 4x2y2 +
1

4
y2 + 2x2 +

1

2
x)

(0, x2z + y2 +
1

2
x, −y2z − 2x−

1

2
)

16



syzygies play an essential role in resolution of ideals and

modules

for a commutative ring R,

e.g. polynomial ring R = K[x1, . . . , xn],

and a module M over R,

a free resolution of M is:

· · · −→ Rs2 −→ϕ2 Rs1 −→ϕ1 Rs0 −→ϕ0 M −→ 0 ,

where all these maps are linear and im(ϕi+1) = ker(ϕi)

everywhere.

Free resolutions for submodules of K[x1, . . . , xn]
m can be

computed by Gröbner bases.

Hilbert (1890) has shown that such resolutions are always

finite and not longer than m.
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3. Equational logic

the problem:

given:

• a term algebra T (Σ, V ) over a signature Σ

and variables V

• E = {si = ti | i ∈ I} a set of equations over T

generating an equational theory =E

• equivalence relation s ≡E t ⇐⇒ s = t ∈=E

decide:

• decide: “s =E t” ?

for s, t ∈ T (Σ, V )
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existential theorem:

this is a problem in predicate logic and as such semide-

cidable
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symbolic algorithm:

(also applicable for the computation of Gröbner bases)

define a reduction relation on T (Σ, V ) by orienting the

equations

ei : si = ti

in one of the ways (according to a reduction ordering)

ri : si −→ ti or ti −→ si

(w.l.o.g. assume ri : si −→ ti.

This leads to a so-called “rewrite rule system (RRS)”

R = {ri | i ∈ I}
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The reduction −→R works in the following way: if there

is a substitution σ such that σ(si) = u, then any term

containing u as a subterm can be reduced to the corre-

sponding term, where u is replaced by σ(ti):

u −→R v ⇐⇒ ∃p, i, σ : u|p = σ(si), and

v = u[p← σ(ti)] .

In general the termination property is undecidabel for

rewrite rule systems. But there are several sufficient con-

ditions; e.g. si > ti w.r.t. a reduction ordering. For

the following let us assume that the rules can be ordered

w.r.t. such a reduction ordering.
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then −→R has the following properties:

• −→R is terminating (if, e.g., the rules are ordered

w.r.t. a reduction ordering)

• ←→∗R = =E

but −→R in general is not Church-Rosser:
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let G consist of the axioms of group theory

G = { (1) 1 · x = x,

(2) x−1 · x = 1,

(3) (x · y) · z = x · (y · z) }

which are oriented (lexicographic path ordering with
−1 > · > 1) to give the rewrite rule system

R = { (1) 1 · x −→ x,

(2) x−1 · x −→ 1,

(3) (x · y) · z −→ x · (y · z) }

then

x−1 · (x · y) ←−(3) (x−1 · x) · y −→(2) 1 · y −→(1) y

both results are irreducible,

they are congruent modulo =E,

but they have no common successor
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The goal is to transform the RRS R into an equivalent

R̂

←→∗R = ←→∗
R̂

which has the Church-Rosser property

As in the previous cases (Gauss elimination, Euclidean

algorithm, Gröbner bases) we investigate “smallest” sit-

uations in which a term can be reduced in essentially 2

different ways

• we look at terms which can be reduced w.r.t. two

different rules ri : si −→ ti, rj : sj −→ tj

• this means that there is a most general unifier (sub-

stitution) σ s.t.

σ(sj) = σ(si)|p

for some position p
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if

σ(si)|p = σ(sj)

then
σ(si) = u

↓ ↓

σ(ti) σ(si)[p← σ(tj)]

these reduction results are obviously equal modulo =E;

so are normal forms v1, v2 to which they can be reduced.

If v1 6= v2, then we try to orient them into a new rule

which will not violate the termination property
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if this process terminates and yields a set of rules R̂ then

• ←→∗R = =E = ←→∗
R̂

• −→R̂ is both Noetherian and CR

So we can decide the equality modulo E by reduction

w.r.t. R̂

in the end we can interreduce the elements in R̂ and so

get a minimal set of rewrite rules for =E
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for the example of group theory this means that be-

cause of

x−1 · (x · y) ←−(3) (x−1 · x) · y −→(2) 1 · y −→(1) y

we add the new rule

(4) x−1 · (x · y) −→ y
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for group theory this Knuth-Bendix process 6 actually

terminates and yields the following minimal rewrite rule

system:

(1) 1 · x −→ x,

(2) x−1 · x −→ 1,

(3) (x · y) · z −→ x · (y · z),

(4) x−1 · (x · y) −→ y,

(5) x · 1 −→ x,

(6) 1−1 −→ 1,

(7) (x−1)−1 −→ x,

(8) x · x−1 −→ 1,

(9) x · (x−1 · y) −→ y,

(10) (x · y)−1 −→ y−1 · x−1.

6D.E. Knuth, P.B. Bendix, Simple word problems in universal algebra, in J. Leech (ed.),
Computational Problems in Abstract Algebra, Pergamon Press (1970)
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Conclusion

symbolic computation

is not so much a subfield of mathematics/computer sci-

ence,

but a particular way of looking at mathematical prob-

lems. a

philosophy of mathematics
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Thank you !
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