
Verification of Multiple Choice Functional Programs in
Theorema

Nikolaj Popov, Tudor Jebelean?

Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria
{popov,jebelean}@risc.uni-linz.ac.at

Extended Abstract

We present a novel method for proving total correctness of recursive functional pro-
grams defined by a simple scheme (however, the most frequent one in practice). The
method provides not only a proof for correct programs, but also a hint on “what is wrong”
if the program is not correct.

As usual, program correctness is transformed into a set of first-order predicate logic
formulae by a Verification Condition Generator (VCG). As a distinctive feature of our
method, these formulae do not refer to a theoretical model for program semantics or
program execution, but only to the theory of the domain used in the program.

In more detail, consider a program which computes a function F (over a certain do-
main), together with a specification given by a precondition on the input IF [x] and a
postcondition on the input and the output OF [x, y]. One says that the program is to-
tally correct with respect to the specification iff the program terminates on any input x
satisfying IF , and, for each such input, the condition OF [x, F [x]] holds:

(∀x : IF [x]) OF [x, F [x]]. (1)

We consider the class of Simple Recursive Programs with Multiple Recursive Calls, that
is the ones which may be expressed as:

F [x] = If Q[x] then S[x] else C[x, F [R1[x], . . . , Rn[x]]], (2)

where Q is a predicate and S, C, R1, . . . , Rn are auxiliary functions (S[x] is a “simple”
function, C[x, y] is a “combinator” function, and R1[x], . . . , Rn[x] are“reduction” func-
tions). We assume that the functions S, C, and R1, . . . Rn satisfy their specifications
given by IS [x], OS [x, y], IC [x, y], OC [x, y, z], IR1 [x], OR1 [x, y], . . . , IRn

[x], ORn
[x, y]. Note

that functions F with multiple arguments also fall into this scheme, because the arguments
x, y, z could be vectors (tuples).

In fact, the method presented here works analogously on the more general class of
programs containing Case statements (If–then–else with several cases).

? The program verification project is supported by BMBWK (Austrian Ministry of Education,
Science, and Culture), BMWA (Austrian Ministry of Economy and Work) and by MEC (Ro-
manian Ministry of Education and Research) in the frame of the e-Austria Timişoara project.
The Theorema system is supported by FWF (Austrian National Science Foundation) – SFB
project F1302.



We are able to prove the Soundness of V CG (the verification condition generator),
namely: if all formulae produced by V CG on input F, IF , OF hold, then the program F
satisfies its specification IF and OF . (For more details, see [1]).

Moreover, we are also interested in the following question: What if some of the verifi-
cation conditions do not hold? May we conclude that the program is not correct? In fact,
the program may still be correct. However, if the VCG is complete, then one can be sure
that the program is not correct. A VCG is complete, if whenever the program satisfies its
specification, the produced verification conditions hold.

The notion of Completeness of a VCG is important for the following two reasons:
theoretically, it is the dual of Soundness and practically, it helps debugging. Any coun-
terexample for the failing verification condition would carry over to a counterexample for
the program and the specification, and thus give a hint on ”what is wrong”.

Coherent Programs.
We state here the principles we use for writing coherent programs with the aim of

building up a non-contradictory system of verified programs. Although, these principles
are not our invention (similar ideas appear in [2]), we state them here because we want to
emphasize on and later formalize them.

Building up correct programs:
We propose the following methodology for building up a collection of correct programs:
– start from basic (trustful) functions e.g. addition, multiplication, etc.;
– define each new function in terms of already known (defined previously) functions

by giving its source text, and its specification (input and output predicates) and prove its
total correctness with respect to the specification.

This simple inductively defined principle would guarantee that no wrong program may
enter our collection. The next we want to ensure is the easy exchange (mobility) of our
program implementations. This principle is usually referred as Modularity:

Once we define the new function and prove its correctness, we ”forbid” using any
knowledge concerning the concrete function definition. The only knowledge we may use is
the specification.

Furthermore, we need to ensure that when defining a new program, all the calls made
to the existing (already defined) programs obey the input restrictions of those programs
– we call this: Appropriate values for the auxiliary functions.

Now we define Coherent programs as all those, which obey the above restrictions.

In addition to the soundness statement, we have proven a completeness statement for
the class Coherent Simple Recursive Programs. (More details are available at [3]).

References

1. T. Jebelean, L. Kovacs, and N. Popov. Experimental Program Verification in the Theorema
System. STTT, pages 1–10, 2006. in press.

2. M. Kaufmann; J. S. Moore. An industrial strength theorem prover for a logic based on common
lisp. Software Engineering, 23(4):203–213, 1997.

3. N. Popov. Verification of Simple Recursive Programs in Theorema: Completeness of the
Method. Technical Report 05-06, RISC Report Series, University of Linz, Austria, June 2005.


