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Lifting the vertices of a k sided regular polygon from it’s plane, perpendicularly by the same height, and joining with the centre of the polygon, we get the k edges of the hypercube (k-cube) modelled in the three-dimensional space (3-model). From these the 3-models or its surface polyhedra can be generated as well in different procedures [2,3,4]. Combining 2<j<k edges, 3-models of  j-cubes, as parts of the k-cube, are easy to build.
The space-filling arrangement of these models can further be dissected and reordered by inner lower-dimensional 3-models and Boole-operations.
For odd k it is advisable to originate the construction from a k-1 sided polygon. In this case the k-th edge is perpendicular to the base plane, and we obtain a degenerated axonometric projection. For any k each vertex lies so in planes parallel to the base plane of construction and in the plane intersections containing rotational axes, therefore a plane tiling appears in these intersections. These tiling can further be dissected and reordered. The cases k>9 are currently under research. 
Some k-cube 3-models can also create space-filling polyhedra, therefore the question is even justified in [1, 2].
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