A Better DPLL Algorithm Using the N-Literal SAT Representation
Gábor Kusper

Eszterházy Károly College

gkusper@aries.ektf.hu
Abstract

The problem of propositional SATisfiability for formulae in conjunctive normal form is the first known NP-complete problem. Many practical NP-hard problems may be transformed efficiently to SAT. The most widely used SAT solver is the well-known DPLL method. It is based on Unit Propagation, UP for short. DPLL spends 80-90% of its runtime in UP, so if we want to speed-up DPLL then we have to either speed-up UP or reduce the number of used UP steps. This paper is concerned on the second approach. We introduce the n-literal clause set representation. A clause set is the conjunction of disjunctions of literals. A literal is a propositional variable or its negation. This literal notion corresponds to the 1-literal notion in this paper. An n-literal consist of 2^n bits, each bit corresponds to a combination of n (normal) literals. In particular the 2-literal representation is the following: which uses 4 bits to represent all the 15 possible basic (basic means cannot be simplified) formulae with 2 variables ([--]:0001, [-+]:0010, [-x]:0011, [++]:0100, [--,++]:0101, [x+]:0110, [-x,x+]:0111, [+-]:1000, [x-]:1001, [-+,+-]:1010, [-x,x-]:1011, [+x]:1100, [+x,x-]:1101, [+x,x+]:1110, [xx]:1111). The idea is that every bit corresponds to a 2-clause (a clause with two concrete literals). For example, the least significant bit corresponds to --. If a bit is 1 then the corresponding 2-clause is subsumed by the represented formula. Now we can generalize UP be n-literal UP. Now the DPLL algorithm can use this generalized UP notion. We performed lots of experiments with the new DPLL algorithm. We found that on some problem sets it is always better than the one using 1-literal SAT representation. These problem sets are the graph coloring problems and the pigeon-hole problem.
