
Extension of GCC with a fully manageable

reverse engineering front end

Csaba Nagy

University of Szeged, Department of Software Engineering

Nagy.Csaba.5@stud.u-szeged.hu

In the open source community one of the most popular compiler is GNU
GCC. It is a very complex and robust compiler but because of its working
mechanism it has no ability for special transformations like interprocedural op-
timizations.

A typical compiler has a three sided (front end, middle end, back end) con-
struction. The front end analyses the source code and builds an abstract internal
representation of the program. The middle end executes generic analysis, trans-
formations (eg. optimizations) and prepares the internal representation for �nal
code generation which is realized by the back end. There are smaller but very
useful projects for only front/middle/back ends, too. For example Edison De-
signs Group's C++ front end is used by many modern commercial compilers and
Columbus/CAN reverse engineering framework is used for many C++ source
analyses. So it seems possible to achieve a more e�ective compiler by extending
GCC with a front end which is capable of running special algorithms.

This paper shows one solution for this extension. It does not solve GCC's
interprocedural problems but shows one usable way to extend the compiler
with features which solve these problems. The described method is based on
using Columbus/CAN instead of GCC's front end and GCC's back end for
code generation. The complexity of building this \extended compiler" is in
transforming the Columbus's abstract C++ code representation graph to the
back end's IR (intermediate representation). As Columbus has a well-structured
schema for the representation of C++ sources, by this transformation we will
have the ability to execute those special transformations on the code before
the compiling phases. Furthermore this technique opens the possibility to link
other front ends (like EDG) with GCC to achieve a more powerful compiler, for
example in code size optimizations.

This approach has been tested on GCC's o�cial Code-Size Benchmark En-
vironment (CSiBE) as real-world system and for the testing di�erent metrics
have been measured on the compilation with this \extended compiler" and with
the o�cial GCC.


