
ICAI 2007

1

Abstract — the parallelization of numeric applications

highlights several strategies which can be applied depending on

numeric context. But a feature is often missing: the adaptability.

The definition of a numeric context means the configuration of

resources such as memory, processor load and communication

graph, but the resource availability is an evolving feature. It is not

predictable and the adaptable aspect is essential.

Because the execution has to be driven by the availability of

main resources, the agents of a numeric computation have to

react when their context changes. This paper proposes a

framework called MAFPC, based on mobile agents; they

represent a control layer. This layer plays the role of an observer

which manages the computing context. The observations can also

generate events for more global views such as monitor, debugger

or tools to track down performance issues on demand.

Index Terms—mobile agent, monitoring, numeric case study,

scheduler.

I. INTRODUCTION

HIS document presents our approach of parallel adaptive

programming technique. This need comes from our past

experience about parallel programming and especially in

numeric analysis domain. The basic features of any simulation

allow users to create a initial configuration. A configuration is

about all the resources used during an execution: processor

memory, input / output devices, communication channels but

also some actions such as reporting and saving. An initial

configuration can not take into account all the change of a

simulation context even potential bug or breakdown.

With a classical parallelization of code, an execution of

code meant that all the external features should be fixed before

the start point (the beginning of the execution). This kind of

constraints is not accepted today, because frequently, the input

data are not predictable or risks have to be considered during

This work was realized at the L.A.C.L. (Laboratory of Algorithm,

Complexity and Logics of Paris 12 university, France).

Cyril Dumont is with the L.A.C.L., Paris 12 university, France (e-mail:

dumont.cyril@gmail.com).

Fabrice Mourlin., is with the L.A.C.L., Paris 12 university, France

corresponding author to provide phone: +33-615051551; fax: : +33-

145170350; e-mail: fabrice.mourlin@wanadoo.fr)

execution. Thus, it is essential that the main features of the

execution context are managed during the whole execution of

a code. For instance, if a given node of the network is not

alive, the numerical simulation does not stop but the activity

has to be adapted over the other nodes.

 The adaptability of a code means that the resources are used

as well as possible. If the resource is processor, it involves that

some code has to be exported onto another processor which is

recently free. This is the main reason why adaptability is

always realized by the use of mobile agent.

This paper describes an abstract framework for itinerant

agents that can be used to implement numeric remote

applications. The idea of harnessing computational power of

networked computers is not new. It has long been an active

area of research. Job scheduling systems have covered a wide

range of needs, from traditional batch job queuing, to load

sharing, and cycle stealing; see [1] for an excellent review of

leading packages. There are also parallel programming

environments that provide task scheduling, load balancing, and

even fault tolerant services in support of parallel applications

on clusters [2][3].

In this paper, we introduce a new approach for the

development of Java-based numeric applications over our

framework of mobile agents. Our approach is based on the

idea of using mobile agents for the control of resources. These

agents are launched to different hosts on the network and they

cooperate and communicate among themselves in order to

solve large problems fast. The numeric application is

considered as a client of the agent control layer.

The driving force motivating the use of mobile agents is

twofold. First, mobile agents provide an efficient, flexible and

asynchronous method for searching for information or services

in rapidly evolving networks: mobile agents are launched into

the unstructured network and roam around to gather

information. Second, mobile agents support intermittent

connectivity, slow networks, and lightweight devices. This

second property makes the use of mobile agents very

attractive. In our case, it relieves the remote client from any

unnecessary overhead by moving it to the heavyweight servers

at the fixed network. Furthermore, it allows a straightforward

adaptation of our approach to the emerging, and very popular,

wireless environments.

Mobile Agent Framework for Parallel

Computing: MAFPC

Cyril Dumont, Fabrice Mourlin

Paris 12 University

LACL

Créteil, France

dumont_cyril@yahoo.fr, fmourlin@yahoo.fr

T

ICAI 2007

2

We structure our paper as follows: a first part where we

explain how the control layer is deployed, a second part

describes the exchange of data between the mobile agents

(which observes the resources) and the numeric application

and thirdly, we detailed how to develop with our framework.

Finally, we conclude about the first results we obtained with

recent computing application.

II. A CONTROL LAYER AS AN GLOBAL OBSERVER

A. Concepts of a Mobile Agent System

Mobile agents are defined as active objects (or clusters of

objects) that have behavior, state and location. Mobile agents

are autonomous because once they are invoked they will

autonomously decide which locations they will visit (their

roadmap) and what instructions they will perform (their task).

This behavior is either defined implicitly through the agent

code (see e.g. [4]) or alternatively specified by an itinerary at

runtime modifiable (see e.g. [5]). Mobile agents are mobile

since they are able to migrate between locations that basically

provide the environment for the agents’ execution and

represent an abstraction from the underlying network and

operating system.

With the properties printed out above it has been often

argued that mobile agents provide certain advantages

compared to traditional approaches as the reduction of

communication costs, better support of asynchronous

interactions, or enhanced flexibility in the process of software

distribution.

The use of mobile agents has been particularly promising in

application domains like information retrieval in widely

distributed heterogeneous open environments (e.g. the World

Wide Web), network management, electronic commerce, or

mobile computing. This last domain contains applications

which use large set of data and also intensive computations.

For instance, electromagnetic simulations mean to solve

Maxwell timed equations and the size of the data depend on

the frequency of the experiment. If the frequency is greater

than 1 GHz, the set of data can not be treated with only one

processor. Moreover, if the volume of the experiment is

greater then 10 m
3
, then the limits of the computation needs

also more processors.

Several implementations already exist but few of them hide

technical features from their environment. Data exchange is

also a strong constraint in agent community; data type has to

be preserved from the sender to the receivers. These main

constraints helped us to select a mobile agent framework.

Because there is no framework which respects these features,

we developed our own framework which was presented at the

ESM 2005 conference [6].

B. Mobile agent framework with JINI

1) Jini introduction

By using objects that move around the network, the Jini

architecture makes each service, as well as the entire network

of services, adaptable to changes in the network. The Jini

architecture specifies a way for clients and services to find

each other on the network and to work together to get a task

accomplished. Service providers supply clients with portable

Java technology-based objects that give the client access to

the service. This network interaction can use any type of

networking technology such as RMI, CORBA, or SOAP,

because the client only sees the Java technology-based object

provided by the service and, subsequently, all network

communication is confined to that Java object and the service

from whence it came.

When a service joins a network of Jini technology-enabled

services and/or devices, it advertises itself by publishing a

Java technology-based object that implements the service

API. This object's implementation can work in any way the

service chooses. The client finds services by looking for an

object that supports the API. When it gets the services

published object, it will download any code it needs in order

to talk to the service, thereby learning how to talk to the

particular service implementation via the API. The

programmer who implements the service chooses how to

translate an API request into bits on the wire using RMI,

CORBA, XML, or a private protocol.

2) Our Jini approach

Few numeric approaches exist over the Jini framework. The

Jini events are rich data structure and it is quite difficult to

manage and to filter all of them. A first work is called JGrid.

Because future grid computing systems will be pervasive,

invisible, and provide access to a wide range of services, at

any time, and from a variety of devices. The scale and nature

of next-generation grids pose important research and

engineering problems.

The JGrid project at the University of Veszprem (MTA

SZTAKI, Eotvos University of Sciences and Sun

Microsystems Hungary, and is funded by the Hungarian

Ministry of Education) investigates the use of Jini as a

potential infrastructure for next-generation grids. The project

is motivated by the fact that future-generation grid computing

systems will differ from current ones [11]. Future grids will

also be used not only for high-performance computing tasks,

but also for carrying out business, and assisting society and

individuals in many aspects of everyday life.

Our approach differs from JGrid project because our

solution is not only dedicated to grid computing. Our mobile

agent definition allows us to use agent not only for the

implementation of a business algorithm but also for the

observation of the algorithm. It means our mobile agents are

more polyvalent and adaptable to their context.

Our mobile agent framework consists of two main

components. The first component is mobile agent; that is,

entities with some task to do. A real application contains

several kinds of mobile agent. Each kind has its own task and

each agent has its own road map. A task can depend on the

location where the agent is. For instance, the class path, which

is used for the class loading, is a typical local resource.

The second component is the mobile agent host(s), the

service that provides the mobile agents' execution platform. In

ICAI 2007

3

a distributed environment, we can have one-to-many agent

hosts as well as one-to-many agents. To be an active agent

platform, a given node in the system must have at least one

active agent host. Figure 1 describes the framework

components.

Both agent and agent host have to publish their availability

in public registry. This publication contains a record of data,

each field of this record qualify a facet of the service:

signature, scope, exception case, etc.

Figure 1: agent framework architecture for one workstation.

To sum up, each node of the network of workstations

possesses at least one agent host and a public registry at the

beginning of an execution. This agent host has to publish into

the local public registry its ability to receive agents. This

service filters specific demands of mobile agent. It is also

possible to overload the reception service. Each of the

services describes a precise process of reception (control,

propagation, or eventually measure).

Our framework is based on Java language and Jini

technology. The Jini networking system is a distributed

infrastructure built around the Java programming language

and environment. Jini is the name for a distributed computing

environment, that can offer ``network plug and play''. A

device or software service like an agent can be connected to a

network and announce its presence, and clients that wish to

use such a service can then locate it and call it to perform

tasks [7]. Jini can be used for mobile computing tasks where a

service may only be connected to a network for a short time,

but it can more generally be used in any network where there

is some degree of change.

The basic communication model is based on the semantic

model of the Java Remote Method Invocation system, in which

objects in one Java virtual machine communicate with objects

in another by receiving a proxy object that implements the

same interface as the remote object. This communication

model is the core feature for moving agents. The proxy object

deals with all communication details between the two

processes. The proxy object can introduce new code into the

process to which it is moved. This is possible because Java

byte codes are portable, and it is safe because of the Java

environment’s built-in verification and security.

To this underlying communication model the Jini system

adds some basic infrastructure and parts of a programming

model. The infrastructure provides a mechanism by which

clients and services can join into the Jini network (figure 1),

while the programming constructs encapsulate mechanisms

that allow reliable distributed systems to be built. Java

provides the Jini system with a mechanism to move mobile

objects, including their code, safely and efficiently from a

service to a client of that service. The Java type system forms

the basis for identifying services, and its polymorphic nature

lets it treat requests for service as requests for something that

implements at least a certain type, although the service might

offer more. However, the requirement for the Java language

and platform is only at the network level; mobile agent

programmers can use our Mobile Agent Framework to

implement a mobile agent system that can live in the Jini

environment.

C. Deployment step

In this section, we explain how a computing context can be

initially deployed. It is obvious that some code has to be

deployed before the computing code is launched. This step is

not a static constraint, it has to be initially done before a

workstation (or a node of the network) is used for the

computing. Also, if the used net contains three workstations, a

first code is deployed on each of the three workstations.

This first code is used to publish a first service (called code

manager) in the public registry of each workstation. This

service expresses that the node is able to receive a piece of

work or a part of the load of the application. It means it is free

for computing. Figure 2 shows a monitor code which deploys

this first layer.

This exportation is frequently coupled with some input data

which are specific to each agent host. For example, a

computation has to be done on a very large amount of data.

Also, the input data described the bounds of the area which is

booked for that node. It can also contain some criteria about

the scheduling of the computation: how to converge to a result,

a termination condition, etc.

Figure 2: deployment step with three free workstations from a monitor node.

Computer1

CM

PR stands for Public Registry

CM stands for Code Manager
PR

2) Service

Publication

Computer2

CM

PR

Computer3

CM

PR

Monitor 1) Code

Deployment

Each new computer has to

receive this first agent.

Input data set1

Input data set3

Input data set2

Computer (i)

Agent

Host

B A

C

D

A, B, C, D are mobile agents

Outgoing

agents

Incoming

agents

Public registry Service publication

ICAI 2007

4

When there are a lot of code managers, it is essential to

build a hierarchy of dependency between the code managers

for the collect of result or for insuring a better robustness.

Also, the input data contains feature about the neighborhood of

the node (which is the responsible node, which are the first

close nodes to it, etc.).

Now, three nodes are identified as member of a community

of agent host where it is possible to realize some computations.

Thus, a first case is about the start of the computing code.

Because a community of agents is known, the first start of the

computing code is realized with that community. But it does

not mean that the community is locked. It is possible to grow

or to reduce its population of agents.

To start the computation, the monitor calls all free code

managers and it uses their ability to migrate computing agent

from the monitor onto their host. After this migration, each

code manager is responsible of the scheduling. It means that

several steps are considered: the reception of a computing

agent, the control of its integrity, the start of its task, the end of

its task and the management of its need.

The reception of a computing agent is a quite complex task

because a migration of agent is not only a code which travels

from one node to another, but this agent has also a state and its

state travels with it.

The code manager checks the computing agent does not

access to private resources and it assigns permissions to this

kind of agent. Then, its task is launched. This task can be a

local activity or a more complex activity with communication

with other agents. The whole lifecycle of the computing agent

is managed by the code manager.

Some more details have to be added about the lifecycle of

the agent hosts. When a code manager received a computing

agent, it changes the status of its published service (in public

registry) during the execution of the task of that agent. This

means that it is not free for a new computing activity, but it is

free for the reception of other agents useful for the computing

agent.

When the task of the computing agent is finished, it updates

the status of its public service to express that it is available as

an agent host for a new computing case.

The notion of community means a group of mobile agents

deployed on several workstations. Every ones collaborate to

the same computing application. Also when a code manager of

an agent host expresses via its own public service that it is

free, this involves that it can be included in another community

(another computing application).

In the first part of the paper, we chose to define only one

code manager per agent host for the simplicity of the

explanation. This is not a limitation at all. An agent host can

have more than one code manager. In that case it is the support

of several computing cases. The figure 3 shows that code

managers are useful for isolating each computing case. They

play the same role as a class loader. It means that it creates an

area for interactions between agents which work on the same

computation. But an agent of the same class managed by

another code manager has another class (even if the names are

the same). This insures safe computations; there is no effect

from one execution on to another one.

The number of code manager can be arbitrary limited

initially by the monitor, but this limit can be the result of an

observation of a load balancing algorithm.

Figure 3: different communities can be shared the same set of agent hosts.

The creation of a community is realized by the monitor and

its creation involves the identification of a first set of agent

hosts. Also, if there is no creation of community by an agent

host, some agent host could be not ready for the reception of a

code manager if they have already received code managers of

other communities. For instance, this means that the load of an

agent host is to important for the execution of anything else. In

that case, the new code manager will be received with the busy

status. This information means that this code manager can not

accept a computing agent for the moment, but maybe later

when the load performance of the agent host will allow it.

The code manager takes the role of an observer of the local

state of the agent host. It is also a decider about which actions

is possible or not. This is a key feature when the computing

agent needs some additional data. The scheduling of that

management is detailed in the next section.

III. EXCHANGE OF DATA BETWEEN THE MOBILE AGENTS

The lifecycle of a computing agent is structured into several

states (figure 4: UML state chart). Depending of the state,

functions can be done by this agent. The transitions between

the states are managed by the code manager.

Computer1

CMA

PR stands for Public Registry

CM stands for Code Manager PR

Input data set1A

CMB Input data set1B
Computer2

CMA

PR

Input data set2A

Computer3

PR

CMB Input data set3B

B

A

B

A

There are 2 communities

identified by indices A and B

B community

ICAI 2007

5

Figure 4: lifecycle of a computing agent

The subject of that section concern both states “Importation

of another agent” and “Exchange of data”. Both of them are

done under the control of the code manager.

A. Importation of another agent

A computing agent can need the help of another one in a lot

of case. For instance, before the end of the task of an agent, the

results have to be collected and merged with other results.

Also, the computing agent can ask its code manager for the

reception of a collector agent.

During the task of an agent, a complex and repetitive

computation can be done by a specialized agent (for solving

temperature equation, for converting Cartesian coordinates

into Spherical coordinates, etc.). Also, the agent will ask for

the code manager to receive it.

All the requests are buffered and each request corresponds

to a service demand which is published into the public registry.

If the desired agent is present on the same agent host, it will

satisfy the demand when its current task will be finished. If this

kind of agent is not on the current agent host, the demand is

propagated to the other public registries. Then, the process

continues and if an agent host contains such agent, it will

answer to the demand.

When several agent hosts answer to a request, the code

manager selects the nearest agent host (depending on the input

data it received at the beginning). The reception of a response

is just an observation; the process of migration has to be done

just after. It is quite similar as the first deployment except that

it concerns two code managers.

The migration of an agent means that the mobile agent is

unpublished from the public registry of the agent host where it

was. The code and the state of that agent are serialized to the

agent host which asked for it. At the reception of that agent

the process is similar as shown figure 4. The interactions

between this new agent and the other ones which were already

managed by the code manager of the community, local

exchanges of data allow setting up the parameters of the task

to be done by the new agent. Also interactions will be

necessary to have the results of the task and to use them into a

more complex work. This is the subject of the next section.

During a migration, before deleting the service of the public

registry, a code manager can saved information about the

activity of that agent into a log file and some additional

information can be saved about the authors of the request, etc.

These data could be used for a post mortem analysis.

B. Exchange of data

Two kinds of data exchanges are considered: local or

remote. In that context, local means exchange inside a

community on the same agent host and remote means

exchange inside the same community but on distinct agent

hosts. There is no possible communication between two agents

which do not belong to the same community. There is only one

possibility: the migration of an agent. Also the communities

share the same agent power but not the data of these agents.

In our framework, all the communications are asynchronous

and their trace can be done. When an agent wants to send data

to another one, it does not know where this agent is. It just

wants to exchange information. This is why the code manager

is the core of the strategy.

An emission is a message which is read by the code

manager. In that case its role is like a postman. It reads the

destination and publishes the demand about that destination.

As before two cases are possible: it is local or not.

If the destination is another local agent, an agent will answer

to the code manager that it accepts message from the first

agent (a reference to a service of the destination agent). The

communication will be done through the invocation of the

incoming message service of this agent.

If the destination is remote then a code manager of the same

community will answer that the desired agent is on the agent

hot, it manages. As before the code manager of the destination

will send a proxy reference of the incoming message service of

the destination agent. And then, the communication will be

done. This incoming message service is common to all the

mobile agents. It just manages a buffer of messages with

information about them. The figure 5 shows a remote

exchange and the insertion into the message box.

Computer1

CMA

A1 wants to send data to A2

PR

A1

 Computer2

CMA

PR

A2

1) Data emission

to A2

2) CMA looks for

A2 locally

Computer3

PR

CMB Input data set3B

B

3) CMA looks for

A2 remotely

4) CMA answers

about A2 activity

5) CMA publishes

incoming message

service of A2

6) CMA uses the remote service

Msg

7) a message is added

into the message box

Importation

of the agent
Local activity

Creation

of the

agent

Execution of

the task

End of the

task

Exchange of

data

Importation of

another agent

Publication

of the request

Asynchronous

communication

Local or remote

communication

ICAI 2007

6

Figure 5: Remote communication between two agents of the same community.

When the code manager does not receive any answer about

a possible destination. It means that it does not exist or maybe

it is wrong, also the message is cancelled.

Several strategies can be developed when a destination

agent is not found. First, it is possible to wait until another

code manager answers right information. But this can create a

gridlock into the multi agent system. A more common strategy

uses timeout. After waiting enough time the request is

considered as a cancel action. Then the A1 agent has to decide

what it has to do in that context. An exception can be raised or

the task can be stopped if the priority of the message is high.

When the receiver is missing, a default behavior can easily

be defined as we explained before (lost of information,

exception, etc). But the symmetry is not so obvious. When an

agent is waiting for the reception of data (for instance in

electromagnetism computation where the value of the fields

depends on the values of the neighbor cells) starvation of agent

can be observed. This is why it is so important to define

default value of the message. This allows the receiver to raise

exception or to stop its activity if the value is not emitted.

We use in a previous work [8] a concept of evolving canvas.

The situation we explained can be more complex because of

the mobility of agent. A lot of cases can occur for instance two

requests for the same agents occur onto the same agent host.

Only one of them will be satisfy also the first code manager

which would use the confirmation, will realize the importation

of the agent. The other code manager will lose and would have

to try again its request. This kind of technical feature is not

taken into account by our framework MAFPC but an under

layer called JIMA (for Jini Implementation of Mobile Agent);

it is a result of a work with Mâamoun Bernichi (L.A.C.L, Paris

12 university).

IV. THE FRAMEWORK MAFPC

Our main objective is to provide an API for people who are

expert into numerical analysis or Fortran programmer (a lot of

numerical application are written into Fortran language). A

first version of our framework is based on a set of packages

(computation, agent, communication, etc). The main constraint

is to hide technical features; the user does not have to be an

expert on distributed system or mobile agent system.

Furthermore, the user has to convince about the advantages of

an object oriented approach.

A. Description of MAFPC API

Numerical programs are often described as a statement

diagram and data flow diagrams are frequently used as user

documentation.

Experience into numerical analysis allows identifying

programming patterns. Some previous work has already

studied this subject but it is often limited to object oriented

approach (Gof patterns [9], J2EE patterns, Alexander

patterns). Numerical analysis is instruction oriented also; this

activity domain is not so studied. Effective use of the

fundamental object-oriented concepts can improve an

application’s design. These fundamental concepts are the

foundation that object-oriented design patterns and our

MAFPC patterns build upon.

The following object-oriented concepts are preserved via

the use of our API and all its packages:

• Cohesion: it is the degree to which the methods and

attributes of a class focus on only one purpose in the

system.

• Encapsulation: an object is a capsule that holds the

object’s internal state within its boundary.

• Coupling; it is a measure of how dependent classes are on

other classes. The tighter the coupling between two

classes, the more likely that a change in one class will

require a change in the second class.

• Implementation inheritance

• Composition: it builds complex objects from simpler

objects, which can be built from even simpler objects.

These objects form an object hierarchy where one object

uses another as part of its implementation.

• Interface inheritance: it is the separation of an interface

definition from its implementation. While the

implementation inheritance can cause tight coupling,

interface implementation can help maintain loose

coupling.

• Polymorphism: it provides the ability to invoke the

operations of specific objects through generic references.

As a result, polymorphism facilitates writing more

generic and flexible code.

We consider few packages of the MAFPC API. A first

package called computation contains classes which apply and

extend the command pattern. This pattern offers the

advantages of separating the use of an algorithm from the

algorithm technology code and simplifying the client’s

dependency on the business logic.

Some basic statements are defined as basic behavior like 3D

iteration or 4D iteration. Some more complex statements

concern vector and matrices: global sum, reverse.

Another version of strategy pattern is also extended. It

allows the programmer to encapsulate a family of algorithms

for interchangeable use. This is particularly powerful in matrix

computation.

A second package is about the definition of computing agent.

We propose several kinds of agent:

• Repetitive agents for the definition of no termination

agent like a sensor or an infinite computation

• Collector agent, it is necessary for the construction of a

global property or a result at the end of a work,

• Seeder agent: it is essential at the beginning of a global

work when each agent has its own task but waits for the

reception of the input data. It is the symmetric of the

collector agent.

• etc…

A third important package allows the user to define

community of agent. Finally a package describes

communication schema like a lattice of possible exchange..

ICAI 2007

7

B. How to use the API

The concepts of MAFPC API are a guide of developer. For

instance, maintaining high cohesion has the following

advantages:

• Avoids side affects of changing unrelated code within the

same class.

• Improves code readability by clarifying the role of a

class.

• Facilitates the creation of small reusable components.

Or maintaining strong encapsulation that includes data

hiding has also advantages:

• Allows the implementation of a class to vary without

changing the interface that other classes use to access it

• Allows developers of other classes to use the class

without knowing all of its implementation details

• Prevents inappropriate modifications of an object’s

attributes

Implementation inheritance has also interesting:

• Organizes classes according to inheritance relationships

• Avoids duplication of code that is common to all classes

of a certain super type

However, implementation inheritance is frequently abused.

It is the tightest form of coupling between two classes and has

the following disadvantages:

• Forces subclasses to inherit everything from its super

class, even when it is not appropriate for that subclass.

• Changes to the super class can affect the subclasses.

Whenever the super class is changed, all subclasses

should be retested

Polymorphism offers the classical features:

• Enables the user to write generic code that does not

depend upon a

• specific subclass allows the user to code fewer methods,

because a super type can be specified as the parameter

type

For example, the user task of an agent is built as an

extension of a predefined class (belonging in computational

package). Because of this kind of development, polymorphism

insures that user statement will be applied. Also, a task is

subdivided into subtasks which can be reused for another user

task. The cohesion concept guarantees there is no perturbation

between all the parts. But the composition concept of our API

allows the user to be sure that this task could be a subtask into

a more complex task which will be developed for another

agent.

Patterns reuse ideas rather than code. Patterns emphasize

practical and proven designs rather than original and invented

work. This means that a numerical analysis expert can make

design decisions with greater confidence. Rather than

reinventing known solutions, the users are free to concentrate

on the new features and challenges of a given system.

We use our API for the development of numeric simulation

in electronic domain and electromagnetic domain. Of course,

these codes are not a new version of an existing one but they

are used when adaptability are essential. For instance,

reconfiguring a system occurs frequently during a long time

simulation (more than one day). In that case, MAFPC is used

to add mobile feature to a traditional application. Our patterns

enable simple and rapid communication between developers

who can communicate through well-understood patterns and

pattern names, rather than describing every class or detailed-

design decision. This speeds up the adoption or rejection of

particular design alternatives.

V. CONCLUSION

Patterns capture recurring solutions and their trade-offs to

similar problems in a given context. Patterns are not simply

about the shape of the solution. They are also about

understanding where a developer can use a pattern and its

consequences. A design or design style that works in one

context can be completely inappropriate, and sometimes

harmful, when used in a different context.

Because patterns capture the rationale and the structure

between the elements in a system, MAFPC user can use its

patterns to understand and document existing application.

They are guides to understanding existing applications,

frameworks, and libraries. Because patterns capture common

and repeating designs, they are sometimes invented again or

used by habit in developing a system.

Our first application of MAFPC patterns stressed the

importance of adding new feature to existing numeric analysis

code. Some facets have to be enhanced such that introspection

of existing code and data. But we are convinced into our

approach and the first results provide new working direction.

REFERENCES

[1] J. Jones and C. Crickell. Second evaluation of job queuing/scheduling

software. Tech. Report NAS-97-013, NASA Ames Research Center,

1997.

[2] F. Berman. High-performance schedulers. In I. Foster and C. Kesselman

(eds.) The Grid: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann Pub. August 1998.

[3] C. Mascolo, G. P. Picco, and G.-C. Roman. A fine-grained model for

code mobility. Tech. Report WUCS-99-07, Department of Computer

Science, Washington University in St. Louis, March 1999.

[4] R. S. Gray. “AgentTcl: A Transportable Agent System”, Proc. CIKM’95

Workshop on Intelligent Information Agents, 1995..

[5] D. Wong, N. Paciorek, T. Walsh. “Concordia: An Infrastructure for

Collaborating Mobile Agents”, in Proceedings of the First International

Workshop on Mobile Agents, MA’97, Springer Verlag, 1997..

[6] Maamoun Bernichi et Fabrice Mourlin, "A New Behavioural Pattern for

Mobile Code ",In ESM 2005, University of Porto, Porto, Portugal, 24-

26 October 2005

[7] Maamoun Bernichi et Fabrice Mourlin, "Java mobile agents for

monitoring mobile activities ", In Eurocon'05 conference, Serbia &

Montenegro, Belgrade, November 22-24, 2005

[8] Guide to Jini Technologies," Jan Newmarch (June 2001):

http://jan.netcomp.monash.edu.au/java/jini/tutorial/Jini.xml

[9] Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design

Patterns: Reusable Elements of Object-Oriented Software. Reading:

Addison-Wesley, 1995.

[10] Fowler, Martin, Refactoring: Improving the Design of Existing Code.

Addison Wesley, 2000.

[11] Zoltán Juhász, Péter Kacsuk and Dieter Kranzlmüller, “Parallel Program

Execution Support in the Jgrid System”, the International Series in

Engineering and Computer Science, Distributed and Parallel Systems,

Cluster and Grid Computing, December 31, 2005

