Computer visualization of higher dimensional and non-Euclidean geometries

Emil Molnár, István Prok, Jenő Szirmai

Budapest University of Technology and Economics, Institute of Mathematics, Department of Geometry {emolnar,prok,szirmai}@math.bme.hu

Abstract

The theoretical background of our topic is the *d*-dimensional projective spherical space \mathcal{PS}^d (\mathbf{V}^{d+1} ; \mathbf{V}_{d+1} ; \mathbf{R} ; \sim) or projective space \mathcal{P}^d , modelled as subspace incidence structure of the real d + 1-dimensional vector space \mathbf{V}^{d+1} for points or its dual \mathbf{V}_{d+1} for hyperplanes, respectively. Here \sim indicates the multiplicative equivalence by positive reals \mathbf{R}^+ in case of \mathcal{PS}^d , or by non-zeros $\mathbf{R} \setminus \{0\}$ for \mathcal{P}^d . E.g. non-zero \mathbf{V}^{d+1} vectors $\mathbf{x} \sim c\mathbf{x}$ describe the same point $X(\mathbf{x})$ in \mathcal{PS}^d iff $c \in \mathbf{R}^+$.

In this presentation we report some new results in visualizing higher dimensional regular polytopes in Euclidean 4-space \mathbf{E}^4 (see e.g. [1] and [2]). Furthermore, we illustrate in \mathbf{E}^3 some new analogues of the classical objects: polyhedra, spheres, balls, their combinations in dense ball packing problems in the so-called Thurston 3-geometries \mathbf{E}^3 , \mathbf{S}^3 , \mathbf{H}^3 , $\mathbf{S}^2 \times \mathbf{R}$, $\mathbf{H}^2 \times \mathbf{R}$, $\sim \mathbf{SL}_2\mathbf{R}$, **Nil**, and **Sol** (see e.g. [3]). To these last illustrations ve have to specify the scalar product $\langle ; \rangle$ in \mathbf{V}_{d+1} so in \mathbf{V}^{d+1} (d = 3) by the signature and other requirements (as in [4]).

Keywords: Computer Aided Geometric Modeling, Computer Graphics, Computer visualization

References

- KATONA, J., MOLNÁR, E., PROK, I., SZIRMAI, J., Higher-dimensional central projection into 2-plane with visibility and applications, *Kragujevac Journal of Mathemat*ics, Vol. 35 No. 2 (2011), 249-263.
- [2] PROK, I., http://www.math.bme.hu/~prok
- [3] MOLNÁR, E., SZIRMAI, J., VESNIN, A., Packings by translation balls in ~SL₂R, To appear in J. Geometry, (2014).

- [4] MOLNÁR, E., The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge zur Algebra und Geometrie (Contributions to Algebra and Geometry), Vol. 38 No. 2 (1997), 261–288.
- [5] MOLNÁR, E., http://www.math.bme.hu/~emolnar

Figure 1: The 120-cell with Coxeter-Schläfli symbol (5, 3, 3)