
Modeling C preprocessor metaprograms

using purely functional languages

Máté Karácsony

Dept. of Programming Languages and Compilers,
Fac. of Informatics, Eötvös Loránd University, Budapest

k_mate@inf.elte.hu

Abstract

The preprocessor of the C language provides a convenient base to de�ne
relatively complex source-to-source transformations. Describing these trans-
formations is possible by using parametrized, so called function-like macros.
In fact, the structure of these macros can be almost arbitrarily compound,
limited only by the actual preprocessor implementation [1]. However, writing
and understanding these macros is usually fairly di�cult. The lack of typ-
ing, the statelessness, and the uncommon syntax are the main reasons of this
di�culty.

To support the development of these preprocessor metaprograms, a model
for each of the macros can be implemented with a function in a purely func-
tional language. If only a well-de�ned, restricted set of the chosen language is
used, then a working functional implementation can be translated back into
a preprocessor metaprogram. This translation leads to easily recognizable
patterns in the resulting program, thus makes its maintenance and under-
standing easier. Furthermore, testing and prototyping may need less e�ort
using an initial implementation in a functional language. This method is
similar to the Haskell to C++ template compilation described in [2].

The absence of types in the macro system is expressed by the signature
of these functions: they de�ne mappings between strings. Because they are
pure, the lack of a global state is also simulated. The abstraction level is
increased by using basic arithmetic, conditionals, pattern matching, tuple-
and list-manipulation functions. The process of the modeling and the trans-
lation of the functional elements into preprocessor macros will be presented
using the abstractions provided by the preprocessor subset of the Boost MPL
library [3].

Keywords: Preprocessor metaprogramming, functional programming

MSC: 68N15 Programming languages

1



References

[1] International Standard: Programming languages � C, Second edition, ISO/IEC
9899:1999, 1999.

[2] Zoltán Porkoláb, Ábel Sinkovics: C++ Template Metaprogramming with Em-
bedded Haskell, Proc. 8th Int. Conf. Generative Prog. & Component Engineering
(GPCE 2009)(New York, NY, USA), ACM., 2009.

[3] David Abrahams, Aleksey Gurtovoy: C++ Template Metaprogramming: Con-
cepts, Tools, and Techniques from Boost and Beyond, Addison Wesley Professional,
2004.

2


