
Component visualization methods for large

legacy software in C/C++

Máté Cserépa, Dániel Kruppb

aEötvös Loránd University
mcserep@caesar.elte.hu

bEricsson

daniel.krupp@ericsson.com

Abstract

Software development in C and C++ is widely used in the various in-
dustries including Information Technology, Telecommunication and Trans-
portation since the 80-ies. Over this four decade, companies have built up a
huge software legacy. In many cases these programs, implementing complex
features (such as OS kernels, databases) become inherently complicated and
consist of millions lines of code. During the many years long development, not
only the size of the software increases, but a large number (i.e. hundreds) of
programmers get involved. Mainly due to these two factors the maintenance
of the software becomes more and more time consuming and costly.

To attack the above mentioned complexity issue, companies apply source
code cross-referencers to help in the navigation and visualization of the legacy
code. In this article we present a visualization methodology that helps pro-
grammers to understand the functional dependencies of artifacts in the C++

code in the form similar to UML component diagrams. Our novel graph rep-
resentation reveals relations between binaries, C/C++ implementation �les
and headers. Our technique does not require any modi�cation or documen-
tation of the source code. It solely relies on the compiler generated Abstract
Syntax Tree and the build information to analyze the legacy software.

Keywords: code comprehension, software maintenance, static analysis, com-
ponent visualization, graph representation, functional dependency

1


