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Abstract

Fowler's classical de�nition of program refactoring as it appeared in [1] is
many times broken in CASE tools, which claim non-refactorings to be refac-
toring operations. On other hand-side, there are often forgotten refactorings.
According to the original de�nition [1], �Refactoring is the process of chang-
ing a software in a such way that it does not alter the external behavior of
the code yet improves its internal structure.� Many times, refactoring is done
by hand, which needs a detailed veri�cation. Based on the commutativity
diagram of symbolic execution presented by King in [2] and the above de�-
nition of refactoring, we expressed the principle of program refactoring and
our look at it using symbolic execution. These are presented in this paper
as well as the overall principle of automated refactoring evaluation. For the
question of �is it a refactoring?� we o�er an answer using Java PathFinder
and Symbolic PathFinder for the Java programming language.
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