
A closer look at software refactoring using

symbolic execution∗

Csaba Szabóa, Maro² Kotul'ab, Richard Petru²c

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Ko²ice
a
Csaba.Szabo@tuke.sk, bMaros.Kotula@student.tuke.sk,

c
Richard.Petrus@student.tuke.sk

Abstract

Fowler's classical de�nition of program refactoring as it appeared in [1] is
many times broken in CASE tools, which claim non-refactorings to be refac-
toring operations. On other hand-side, there are often forgotten refactorings.
According to the original de�nition [1], �Refactoring is the process of chang-
ing a software in a such way that it does not alter the external behavior of
the code yet improves its internal structure.� Many times, refactoring is done
by hand, which needs a detailed veri�cation. Based on the commutativity
diagram of symbolic execution presented by King in [2] and the above de�-
nition of refactoring, we expressed the principle of program refactoring and
our look at it using symbolic execution. These are presented in this paper
as well as the overall principle of automated refactoring evaluation. For the
question of �is it a refactoring?� we o�er an answer using Java PathFinder
and Symbolic PathFinder for the Java programming language.

Keywords: Java, refactoring, symbolic execution

MSC: 68N15; 68N20

References

[1] Fowler, M., Refactoring � Improving the Design of Existing Code, Addison-Wesley
Professional, 1st ed. (1999).

[2] King, J. C., Symbolic Execution and Program Testing, Communications of the ACM

Vol. 19 No. 7 (1976).

∗This work was supported by the Cultural and Educational Grant Agency of the Slovak Re-
public, Project No. 050TUKE-4/2013.

1


