
Examining test coverage of C++ template

metaprograms

Tamás Cséria, Gábor Horvátha, Zalán Sz¶gyia

aEötvös Loránd University

{cseri,xazax,lupin}@casear.elte.hu

Abstract

Template metaprogramming is a new technique in C++ programming in

which the algorithms are executed at compile-time. These programs are usu-

ally the foundations of libraries thus their testing is an essential issue. Stan-

dard coverage tools operate at runtime and are not applicable for template

metaprograms. This paper examines the possibilities to check test coverage

and show missing test inputs for template metafunctions.

Unit testing is a common way to test template metaprograms. To en-

sure that a test suite is su�cient we must examine the test coverage. For

a good test suite we expect that every template specialization is checked at

least once. In this paper we check if all specializations were instantiated dur-

ing the compilation of the unit test by extending the compiler to show us

information about template instantiations. For the missing cases we try to

generate skeleton code that helps the programmer to identify the missing test

cases.

We move on by examining if all decisions are tested. We de�ne a decision

by instantiating a template that has bool template parameter with a depen-

dent type. It is expected that during the test suite both values of the bool

template are tested.

Our goal is to aid the testing of complex template metaprograms by show-

ing the programmer the untested cases.

Keywords: C++, template metaprogramming, testing

MSC: 68N15, 68N20

1


